Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/36157
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSilva, Kanishkaen_UK
dc.contributor.authorCan, Burcuen_UK
dc.contributor.authorSarwar, Raheemen_UK
dc.contributor.authorBlain, Fredericen_UK
dc.contributor.authorMitkov, Ruslanen_UK
dc.date.accessioned2024-08-06T00:01:50Z-
dc.date.available2024-08-06T00:01:50Z-
dc.date.issued2023-06-01en_UK
dc.identifier.urihttp://hdl.handle.net/1893/36157-
dc.description.abstractInsufficient data is one of the main drawbacks in natural language processing tasks, and the most prevalent solution is to collect a decent amount of data that will be enough for the optimisation of the model. However, recent research directions are strategically moving towards increasing training examples due to the nature of the data-hungry neural models. Data augmentation is an emerging area that aims to ensure the diversity of data without attempting to collect new data exclusively to boost a model's performance. 7 Limitations in data augmentation, especially for textual data, are mainly due to the nature of language data, which is precisely discrete. Generative Ad-versarial Networks (GANs) were initially introduced for computer vision applications , aiming to generate highly realistic images by learning the image representations. Recent research has focused on using GANs for text generation and augmentation. This systematic review aims to present the theoretical background of GANs and their use for text augmentation alongside a systematic review of recent textual data augmentation applications such as sentiment analysis, low resource language generation, hate speech detection and fraud review analysis. Further, a notion of challenges in current research and future directions of GAN-based text augmentation are discussed in this paper to pave the way for researchers especially working on low-text resources.en_UK
dc.language.isoenen_UK
dc.relationSilva K, Can B, Sarwar R, Blain F & Mitkov R (2023) Text Data Augmentation Using Generative Adversarial Networks – A Systematic Review. <i>Journal of Computational and Applied Linguistics (JCAL)</i>, 1, pp. 6-38. https://ojs.nbu.bg/index.php/JCAL; https://doi.org/10.33919/JCAL.23.1.1en_UK
dc.rightsAs far as we can ascertain there are no restrictions to prevent this work being made publicly available in this repository. If you are aware of any restrictions please contact us (repository.librarian@stir.ac.uk) and we will immediately remove the work from public view.en_UK
dc.rights.urihttps://storre.stir.ac.uk/STORREEndUserLicence.pdfen_UK
dc.subjectText Data Augmentationen_UK
dc.subjectGenerative Adversarial Networksen_UK
dc.subjectAdversarial Trainingen_UK
dc.subjectText Generationen_UK
dc.titleText Data Augmentation Using Generative Adversarial Networks – A Systematic Reviewen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.33919/JCAL.23.1.1en_UK
dc.citation.jtitleJournal of Computational and Applied Linguisticsen_UK
dc.citation.issn2815-4967en_UK
dc.citation.volume1en_UK
dc.citation.spage6en_UK
dc.citation.epage38en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.identifier.urlhttps://ojs.nbu.bg/index.php/JCALen_UK
dc.author.emailburcu.can@stir.ac.uken_UK
dc.citation.date01/06/2023en_UK
dc.contributor.affiliationUniversity of Wolverhamptonen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationManchester Metropolitan Universityen_UK
dc.contributor.affiliationTilburg Universityen_UK
dc.contributor.affiliationUniversity of Wolverhamptonen_UK
dc.identifier.wtid2033495en_UK
dc.date.accepted2023-02-01en_UK
dcterms.dateAccepted2023-02-01en_UK
dc.date.filedepositdate2024-07-30en_UK
rioxxterms.apcnot chargeden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorSilva, Kanishka|en_UK
local.rioxx.authorCan, Burcu|en_UK
local.rioxx.authorSarwar, Raheem|en_UK
local.rioxx.authorBlain, Frederic|en_UK
local.rioxx.authorMitkov, Ruslan|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2024-08-05en_UK
local.rioxx.licencehttps://storre.stir.ac.uk/STORREEndUserLicence.pdf|2024-08-05|en_UK
local.rioxx.filename1_33_compressed_(1).pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source2815-4967en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
1_33_compressed_(1).pdfFulltext - Published Version260.22 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.