Please use this identifier to cite or link to this item:
Appears in Collections:Biological and Environmental Sciences Journal Articles
Peer Review Status: Refereed
Title: Exploring the “overflow tap” theory: linking forest soil CO2 fluxes and individual mycorrhizosphere components to photosynthesis
Author(s): Heinemeyer, Andreas
Wilkinson, Matthew
Vargas, Rodrigo
Subke, Jens-Arne
Casella, Eric
Morison, James I L
Ineson, Phil
Contact Email:
Keywords: Soil CO2 efflux
heterotrophic respiration
autotrophic respiration
plant productivity
Atmospheric carbon dioxide Environmental aspects
Trees Effect of atmospheric carbon dioxide on
Plants Effect of atmospheric carbon dioxide on
Issue Date: Jan-2012
Date Deposited: 2-Feb-2012
Citation: Heinemeyer A, Wilkinson M, Vargas R, Subke J, Casella E, Morison JIL & Ineson P (2012) Exploring the “overflow tap” theory: linking forest soil CO2 fluxes and individual mycorrhizosphere components to photosynthesis. Biogeosciences, 9 (1), pp. 79-95.;
Abstract: Quantifying soil organic carbon stocks (SOC) and their dynamics accurately is crucial for better predictions of climate change feedbacks within the atmosphere-vegetation soil system. However, the components, environmental responses and controls of the soil CO2 efflux (Rs) are still unclear and limited by field data availability. The objectives of this study were (1) to quantify the contribution of the various Rs components, specifically its mycorrhizal component, (2) to determine their temporal variability, and (3) to establish their environmental responses and dependence on gross primary productivity (GPP). In a temperate deciduous oak forest in south east England hourly soil and ecosystem CO2 fluxes over four years were measured using automated soil chambers and eddy covariance techniques. Mesh-bag and steel collar soil chamber treatments prevented root or both root and mycorrhizal hyphal in-growth, respectively, to allow separation of heterotrophic (Rh) and autotrophic (Ra) soil CO2 fluxes and the Ra components, roots (Rr) and mycorrhizal hyphae (Rm). Annual cumulative Rs values were very similar between years (740±43 g Cm−2 yr−1) with an average flux of 2.0±0.3 μmol CO2 m−2 s−1, but Rs components varied. On average, annual Rr, Rm and Rh fluxes contributed 38, 18 and 44 %, respectively, showing a large Ra contribution (56 %) with a considerable Rm component varying seasonally. Soil temperature largely explained the daily variation of Rs (R2 = 0.81), mostly because of strong responses by Rh (R2 = 0.65) and less so for Rr (R2 = 0.41) and Rm (R2 = 0.18). Time series analysis revealed strong daily periodicities for Rs and Rr, whilst Rm was dominated by seasonal ( 150 days), and Rh by annual periodicities. Wavelet coherence analysis revealed that Rr and Rm were related to short-term (daily) GPP changes, but for Rm there was a strong relationship with GPP over much longer (weekly to monthly) periods and notably during periods of low Rr. The need to include individual Rs components in C flux models is discussed, in particular, the need to represent the linkage between GPP and Ra components, in addition to temperature responses for each component. The potential consequences of these findings for understanding the limitations for long-term forest C sequestration are highlighted, as GPP via root-derived C including Rm seems to function as a C “overflow tap”, with implications on the turnover of SOC.
DOI Link: 10.5194/bg-9-79-2012
Rights: Heinemeyer, A., Wilkinson, M., Vargas, R., Subke, J.-A., Casella, E., Morison, J. I. L., and Ineson, P.: Exploring the "overflow tap" theory: linking forest soil CO2 fluxes and individual mycorrhizosphere components to photosynthesis, Biogeosciences, 9, 79-95, doi:10.5194/bg-9-79-2012, 2012. Published in Biogeosciences by Copernicus Publications / European Geosciences Union (EGU).; © Author(s) 2012. This work is distributed under the Creative Commons Attribution 3.0 License.
Licence URL(s):

Files in This Item:
File Description SizeFormat 
Heinemeyer et al 2012_BGS.pdfFulltext - Published Version3.03 MBAdobe PDFView/Open

This item is protected by original copyright

A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved

If you believe that any material held in STORRE infringes copyright, please contact providing details and we will remove the Work from public display in STORRE and investigate your claim.