Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/35954
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBeirami, Behnam Asgharien_UK
dc.contributor.authorPirbasti, Mehran Aen_UK
dc.contributor.authorAkbari, Vahiden_UK
dc.date.accessioned2024-04-27T00:04:24Z-
dc.date.available2024-04-27T00:04:24Z-
dc.date.issued2023en_UK
dc.identifier.other5512405en_UK
dc.identifier.urihttp://hdl.handle.net/1893/35954-
dc.description.abstractAccording to the literature, the utilization of spatial features can significantly enhance the accuracy of hyperspectral image (HSI) classification. Fractal features are powerful measures of texture, representing the local complexity of an image. In HSI classification, textural features are typically extracted from dimensionally reduced data cubes, such as principal component analysis (PCA). However, the effectiveness of textures obtained from alternative feature extraction (FE) methods in improving classification accuracy has not been extensively investigated. This study introduces a new ensemble support vector machine classification system that combines spectral features derived from PCA, minimum noise fraction (MNF), linear discriminant analysis (LDA), and fractal features derived from these FE methods. The final results on two HSI datasets, namely, Indian Pines (IP) and Pavia University (PU), demonstrate that the proposed classification method achieves approximately 95.75% and 99.36% accuracies, outperforming several other spatial–spectral HSI classification methods.en_UK
dc.language.isoenen_UK
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_UK
dc.relationBeirami BA, Pirbasti MA & Akbari V (2023) Fractal-Based Ensemble Classification System for Hyperspectral Images. <i>IEEE Geoscience and Remote Sensing Letters</i>, 20, Art. No.: 5512405. https://doi.org/10.1109/lgrs.2023.3330608en_UK
dc.rights© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_UK
dc.subjectEnsemble learningen_UK
dc.subjectfractal dimension (FD)en_UK
dc.subjecthyperspectral image (HSI)en_UK
dc.subjectvoting-based fusionen_UK
dc.titleFractal-Based Ensemble Classification System for Hyperspectral Imagesen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1109/lgrs.2023.3330608en_UK
dc.citation.jtitleIEEE Geoscience and Remote Sensing Lettersen_UK
dc.citation.issn1558-0571en_UK
dc.citation.issn1545-598Xen_UK
dc.citation.volume20en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.author.emailvahid.akbari@stir.ac.uken_UK
dc.citation.date06/11/2023en_UK
dc.contributor.affiliationK.N. Toosi University of Technologyen_UK
dc.contributor.affiliationUniversity College Dublin (UCD)en_UK
dc.contributor.affiliationComputing Science and Mathematics - Divisionen_UK
dc.identifier.wtid1967299en_UK
dc.contributor.orcid0000-0002-0314-1912en_UK
dc.contributor.orcid0000-0003-2283-499Xen_UK
dc.contributor.orcid0000-0002-9621-8180en_UK
dc.date.accepted2023-10-26en_UK
dcterms.dateAccepted2023-10-26en_UK
dc.date.filedepositdate2024-04-24en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorBeirami, Behnam Asghari|0000-0002-0314-1912en_UK
local.rioxx.authorPirbasti, Mehran A|0000-0003-2283-499Xen_UK
local.rioxx.authorAkbari, Vahid|0000-0002-9621-8180en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2024-04-25en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2024-04-25|en_UK
local.rioxx.filenameFractal_based_Ensemble_Classification_System_for_Hyperspectral_Images.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1558-0571en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
Fractal_based_Ensemble_Classification_System_for_Hyperspectral_Images.pdfFulltext - Accepted Version451.58 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.