Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/35953
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBouhlel, Nizaren_UK
dc.contributor.authorAkbari, Vahiden_UK
dc.contributor.authorMeric, Stephaneen_UK
dc.contributor.authorRousseau, Daviden_UK
dc.date.accessioned2024-04-27T00:04:00Z-
dc.date.available2024-04-27T00:04:00Z-
dc.date.issued2022en_UK
dc.identifier.urihttp://hdl.handle.net/1893/35953-
dc.description.abstractIn this article, we propose a new method for automatic change detection in multitemporal fully polarimetric synthetic aperture radar (PolSAR) images based on multivariate statistical wavelet subband modeling. The proposed method allows us to consider the correlation structure between subbands by modeling the wavelet coefficients through multivariate probability distributions. Three types of correlation are investigated: interscale, interorientation, and interpolarization dependences. The multivariate generalized Gaussian distribution (MGGD) is used to model the interdependencies between wavelet coefficients at different orientations, scales, and polarizations. Kullback–Leibler similarity measures are computed and used to generate the change map. Simulated and real multilook PolSAR data are employed to assess the performance of the method and are compared to the multivariate Gaussian distribution (MGD)-based method. We show that the information embedded in the correlation between subbands improves the accuracy of the change map, leading to better performance. Moreover, the MGGD represents better the correlations between wavelet coefficients and outperforms the MGD.en_UK
dc.language.isoenen_UK
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_UK
dc.relationBouhlel N, Akbari V, Meric S & Rousseau D (2022) Multivariate Statistical Modeling for Multitemporal SAR Change Detection Using Wavelet Transforms and Integrating Subband Dependencies. <i>IEEE Transactions on Geoscience and Remote Sensing</i>, 60. https://doi.org/10.1109/tgrs.2022.3215783en_UK
dc.rights© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_UK
dc.subjectChange detectionen_UK
dc.subjectKullback–Leibler (KL) divergenceen_UK
dc.subjectmultitemporal polarimetric synthetic aperture radar (PolSAR) imagesen_UK
dc.subjectmultivariate generalized Gaussian distribution (MGGD)en_UK
dc.subjectsubband correlationsen_UK
dc.subjectwavelet transformen_UK
dc.titleMultivariate Statistical Modeling for Multitemporal SAR Change Detection Using Wavelet Transforms and Integrating Subband Dependenciesen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1109/tgrs.2022.3215783en_UK
dc.citation.jtitleIEEE Transactions on Geoscience and Remote Sensingen_UK
dc.citation.issn1558-0644en_UK
dc.citation.issn0196-2892en_UK
dc.citation.volume60en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.contributor.funder“Région des Pays de la Loire” through the PULSAR Programen_UK
dc.author.emailvahid.akbari@stir.ac.uken_UK
dc.citation.date19/10/2022en_UK
dc.contributor.affiliationInstitut de Recherche en Horticulture et Semences (IHRS)en_UK
dc.contributor.affiliationComputing Science and Mathematics - Divisionen_UK
dc.contributor.affiliationIETR UMR CNRSen_UK
dc.contributor.affiliationUniversity of Angersen_UK
dc.identifier.wtid1947797en_UK
dc.contributor.orcid0000-0002-4861-8550en_UK
dc.contributor.orcid0000-0002-9621-8180en_UK
dc.contributor.orcid0000-0002-3787-5279en_UK
dc.date.accepted2023-10-09en_UK
dcterms.dateAccepted2023-10-09en_UK
dc.date.filedepositdate2024-04-24en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorBouhlel, Nizar|0000-0002-4861-8550en_UK
local.rioxx.authorAkbari, Vahid|0000-0002-9621-8180en_UK
local.rioxx.authorMeric, Stephane|0000-0002-3787-5279en_UK
local.rioxx.authorRousseau, David|en_UK
local.rioxx.projectProject ID unknown|“Région des Pays de la Loire” through the PULSAR Program|en_UK
local.rioxx.freetoreaddate2024-04-25en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2024-04-25|en_UK
local.rioxx.filenameTGRS_Behloul.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1558-0644en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
TGRS_Behloul.pdfFulltext - Accepted Version5.62 MBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.