Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/35646
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTrombetta, Enricoen_UK
dc.contributor.authorJakubiak, Saraen_UK
dc.contributor.authorKutkova, Saraen_UK
dc.contributor.authorLipschutz, Debbyen_UK
dc.contributor.authorO'hare, Anthonyen_UK
dc.contributor.authorEnright, Jessica Aen_UK
dc.date.accessioned2023-12-13T01:02:33Z-
dc.date.available2023-12-13T01:02:33Z-
dc.date.issued2023-11-29en_UK
dc.identifier.urihttp://hdl.handle.net/1893/35646-
dc.description.abstractSalmonid aquaculture is an important source of nutritious food with more than 2 million tonnes of fish produced each year. In most salmon producing countries, sea lice represent a major barrier to the sustainability of salmonid aquaculture. This issue is exacerbated by widespread resistance to chemical treatments on both sides of the Atlantic. Regulation for sea lice management mostly involves reporting lice counts and treatment thresholds, which depending on interpretation may encourage preemptive treatments. We have developed a stochastic simulation model of sea lice infestation including the lice life-cycle, genetic resistance to treatment, a wildlife reservoir, salmon growth and stocking practices in the context of infestation, and coordination of treatment between farms. Farms report infestation levels to a central organisation, and may then cooperate or not when coordinated treatment is triggered. Treatment practice then impacts the level of resistance in the surrounding sea lice population. Our simulation finds that treatment drives selection for resistance and coordination between managers is key. We also find that position in the hydrologically-derived network of farms can impact individual farm infestation levels and the topology of this network can impact overall infestation and resistance. We show how coordination and triggering of treatment alongside varying hydrological topology of farm connections affects the evolution of lice resistance, and thus optimise salmon quality within socioeconomic and environmental constraints. Network topology drives infestation levels in cages, treatments, and hence treatment-driven resistance. Thus farmer behaviour may be highly dependent on hydrologically position and local level of infestation.en_UK
dc.language.isoenen_UK
dc.publisherPublic Library of Scienceen_UK
dc.relationTrombetta E, Jakubiak S, Kutkova S, Lipschutz D, O'hare A & Enright JA (2023) A modeling study of the impact of treatment policies on the evolution of resistance in sea lice on salmon farms. <i>PLoS ONE</i>.en_UK
dc.rightsThis is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectSea liceen_UK
dc.subjectsalmonen_UK
dc.subjectresistanceen_UK
dc.subjecttreatmenten_UK
dc.subjectgame theoryen_UK
dc.subjectmodellingen_UK
dc.titleA modeling study of the impact of treatment policies on the evolution of resistance in sea lice on salmon farmsen_UK
dc.typeJournal Articleen_UK
dc.identifier.pmid38019751en_UK
dc.citation.jtitlePLoS ONEen_UK
dc.citation.issn1932-6203en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderBiotechnology and Biological Sciences Research Councilen_UK
dc.author.emailanthony.ohare@stir.ac.uken_UK
dc.citation.date29/11/2023en_UK
dc.contributor.affiliationUniversity of Glasgowen_UK
dc.contributor.affiliationUniversity of Glasgowen_UK
dc.contributor.affiliationUniversity of Glasgowen_UK
dc.contributor.affiliationUniversity of Edinburghen_UK
dc.contributor.affiliationMathematicsen_UK
dc.contributor.affiliationUniversity of Glasgowen_UK
dc.identifier.scopusid2-s2.0-85178175624en_UK
dc.identifier.wtid1953109en_UK
dc.contributor.orcid0000-0003-2561-9582en_UK
dc.date.accepted2023-11-08en_UK
dcterms.dateAccepted2023-11-08en_UK
dc.date.filedepositdate2023-12-11en_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorTrombetta, Enrico|en_UK
local.rioxx.authorJakubiak, Sara|en_UK
local.rioxx.authorKutkova, Sara|en_UK
local.rioxx.authorLipschutz, Debby|en_UK
local.rioxx.authorO'hare, Anthony|0000-0003-2561-9582en_UK
local.rioxx.authorEnright, Jessica A|en_UK
local.rioxx.projectProject ID unknown|Biotechnology and Biological Sciences Research Council|http://dx.doi.org/10.13039/501100000268en_UK
local.rioxx.freetoreaddate2023-12-11en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2023-12-11|en_UK
local.rioxx.filenamejournal.pone.0294708.pdfen_UK
local.rioxx.filecount1en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
journal.pone.0294708.pdfFulltext - Published Version1.79 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.