Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/35586
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSouza, Anderson Pen_UK
dc.contributor.authorOliveira, Bruno Aen_UK
dc.contributor.authorAndrade, Mauren Len_UK
dc.contributor.authorStarling, Maria Clara V Men_UK
dc.contributor.authorPereira, Alexandre Hen_UK
dc.contributor.authorMaillard, Philippeen_UK
dc.contributor.authorNogueira, Keilleren_UK
dc.contributor.authordos Santos, Jefersson Aen_UK
dc.contributor.authorAmorim, Camila Cen_UK
dc.date.accessioned2023-11-29T01:01:23Z-
dc.date.available2023-11-29T01:01:23Z-
dc.date.issued2023-12-01en_UK
dc.identifier.other165964en_UK
dc.identifier.urihttp://hdl.handle.net/1893/35586-
dc.description.abstractMonitoring water quality in reservoirs is essential for the maintenance of aquatic ecosystems and socioeconomic services. In this scenario, the observation of abrupt elevations of physicochemical parameters, such as turbidity and other indicators, can signal anomalies associated with the occurrence of critical events, requiring operational actions and planning to mitigate negative environmental impacts on water resources. This work aims to integrate Machine Learning methods specialized in anomaly detection with data obtained from remote sensing images to identify with high turbidity events in the surface water of the Três Marias Hydroelectric Reservoir. Four distinct threshold-based scenarios were evaluated, in which the overall performance, based on F1-score, showed decreasing trends as the thresholds became more restrictive. In general, the anomaly identification maps generated through the models ratified the applicability of the methods in the diagnosis of surface water in reservoirs in distinct hydrological contexts (dry and wet), effectively identifying locations with anomalous turbidity values.en_UK
dc.language.isoenen_UK
dc.publisherElsevier BVen_UK
dc.relationSouza AP, Oliveira BA, Andrade ML, Starling MCVM, Pereira AH, Maillard P, Nogueira K, dos Santos JA & Amorim CC (2023) Integrating remote sensing and machine learning to detect turbidity anomalies in hydroelectric reservoirs. <i>Science of The Total Environment</i>, 902, Art. No.: 165964. https://doi.org/10.1016/j.scitotenv.2023.165964en_UK
dc.rightsThe publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.rights.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserveden_UK
dc.subjectAnomaly detectionen_UK
dc.subjectSatellite imagesen_UK
dc.subjectWater qualityen_UK
dc.subjectMonitoringen_UK
dc.titleIntegrating remote sensing and machine learning to detect turbidity anomalies in hydroelectric reservoirsen_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate2999-12-31en_UK
dc.rights.embargoreason[1-s2.0-S0048969723045898-main.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work.en_UK
dc.identifier.doi10.1016/j.scitotenv.2023.165964en_UK
dc.citation.jtitleScience of the Total Environmenten_UK
dc.citation.issn0048-9697en_UK
dc.citation.volume902en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderBrazilian National Research Councilen_UK
dc.author.emailkeiller.nogueira@stir.ac.uken_UK
dc.citation.date02/08/2023en_UK
dc.contributor.affiliationFederal University of Minas Geraisen_UK
dc.contributor.affiliationFederal University of Minas Geraisen_UK
dc.contributor.affiliationFederal University of Minas Geraisen_UK
dc.contributor.affiliationFederal University of Minas Geraisen_UK
dc.contributor.affiliationFederal University of Minas Geraisen_UK
dc.contributor.affiliationFederal University of Minas Geraisen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationFederal University of Minas Geraisen_UK
dc.contributor.affiliationFederal University of Minas Geraisen_UK
dc.identifier.wtid1958993en_UK
dc.contributor.orcid0000-0003-3308-6384en_UK
dc.date.accepted2023-07-30en_UK
dcterms.dateAccepted2023-07-30en_UK
dc.date.filedepositdate2023-11-27en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorSouza, Anderson P|en_UK
local.rioxx.authorOliveira, Bruno A|en_UK
local.rioxx.authorAndrade, Mauren L|en_UK
local.rioxx.authorStarling, Maria Clara V M|en_UK
local.rioxx.authorPereira, Alexandre H|en_UK
local.rioxx.authorMaillard, Philippe|en_UK
local.rioxx.authorNogueira, Keiller|0000-0003-3308-6384en_UK
local.rioxx.authordos Santos, Jefersson A|en_UK
local.rioxx.authorAmorim, Camila C|en_UK
local.rioxx.projectProject ID unknown|Brazilian National Research Council|en_UK
local.rioxx.freetoreaddate2273-07-03en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||en_UK
local.rioxx.filename1-s2.0-S0048969723045898-main.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source0048-9697en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
1-s2.0-S0048969723045898-main.pdfFulltext - Published Version9.92 MBAdobe PDFUnder Permanent Embargo    Request a copy


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.