Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/35586
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Souza, Anderson P | en_UK |
dc.contributor.author | Oliveira, Bruno A | en_UK |
dc.contributor.author | Andrade, Mauren L | en_UK |
dc.contributor.author | Starling, Maria Clara V M | en_UK |
dc.contributor.author | Pereira, Alexandre H | en_UK |
dc.contributor.author | Maillard, Philippe | en_UK |
dc.contributor.author | Nogueira, Keiller | en_UK |
dc.contributor.author | dos Santos, Jefersson A | en_UK |
dc.contributor.author | Amorim, Camila C | en_UK |
dc.date.accessioned | 2023-11-29T01:01:23Z | - |
dc.date.available | 2023-11-29T01:01:23Z | - |
dc.date.issued | 2023-12-01 | en_UK |
dc.identifier.other | 165964 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/35586 | - |
dc.description.abstract | Monitoring water quality in reservoirs is essential for the maintenance of aquatic ecosystems and socioeconomic services. In this scenario, the observation of abrupt elevations of physicochemical parameters, such as turbidity and other indicators, can signal anomalies associated with the occurrence of critical events, requiring operational actions and planning to mitigate negative environmental impacts on water resources. This work aims to integrate Machine Learning methods specialized in anomaly detection with data obtained from remote sensing images to identify with high turbidity events in the surface water of the Três Marias Hydroelectric Reservoir. Four distinct threshold-based scenarios were evaluated, in which the overall performance, based on F1-score, showed decreasing trends as the thresholds became more restrictive. In general, the anomaly identification maps generated through the models ratified the applicability of the methods in the diagnosis of surface water in reservoirs in distinct hydrological contexts (dry and wet), effectively identifying locations with anomalous turbidity values. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | Elsevier BV | en_UK |
dc.relation | Souza AP, Oliveira BA, Andrade ML, Starling MCVM, Pereira AH, Maillard P, Nogueira K, dos Santos JA & Amorim CC (2023) Integrating remote sensing and machine learning to detect turbidity anomalies in hydroelectric reservoirs. <i>Science of The Total Environment</i>, 902, Art. No.: 165964. https://doi.org/10.1016/j.scitotenv.2023.165964 | en_UK |
dc.rights | The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. | en_UK |
dc.rights.uri | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved | en_UK |
dc.subject | Anomaly detection | en_UK |
dc.subject | Satellite images | en_UK |
dc.subject | Water quality | en_UK |
dc.subject | Monitoring | en_UK |
dc.title | Integrating remote sensing and machine learning to detect turbidity anomalies in hydroelectric reservoirs | en_UK |
dc.type | Journal Article | en_UK |
dc.rights.embargodate | 2999-12-31 | en_UK |
dc.rights.embargoreason | [1-s2.0-S0048969723045898-main.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work. | en_UK |
dc.identifier.doi | 10.1016/j.scitotenv.2023.165964 | en_UK |
dc.citation.jtitle | Science of the Total Environment | en_UK |
dc.citation.issn | 0048-9697 | en_UK |
dc.citation.volume | 902 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.citation.peerreviewed | Refereed | en_UK |
dc.type.status | VoR - Version of Record | en_UK |
dc.contributor.funder | Brazilian National Research Council | en_UK |
dc.author.email | keiller.nogueira@stir.ac.uk | en_UK |
dc.citation.date | 02/08/2023 | en_UK |
dc.contributor.affiliation | Federal University of Minas Gerais | en_UK |
dc.contributor.affiliation | Federal University of Minas Gerais | en_UK |
dc.contributor.affiliation | Federal University of Minas Gerais | en_UK |
dc.contributor.affiliation | Federal University of Minas Gerais | en_UK |
dc.contributor.affiliation | Federal University of Minas Gerais | en_UK |
dc.contributor.affiliation | Federal University of Minas Gerais | en_UK |
dc.contributor.affiliation | Computing Science | en_UK |
dc.contributor.affiliation | Federal University of Minas Gerais | en_UK |
dc.contributor.affiliation | Federal University of Minas Gerais | en_UK |
dc.identifier.wtid | 1958993 | en_UK |
dc.contributor.orcid | 0000-0003-3308-6384 | en_UK |
dc.date.accepted | 2023-07-30 | en_UK |
dcterms.dateAccepted | 2023-07-30 | en_UK |
dc.date.filedepositdate | 2023-11-27 | en_UK |
rioxxterms.apc | not required | en_UK |
rioxxterms.type | Journal Article/Review | en_UK |
rioxxterms.version | VoR | en_UK |
local.rioxx.author | Souza, Anderson P| | en_UK |
local.rioxx.author | Oliveira, Bruno A| | en_UK |
local.rioxx.author | Andrade, Mauren L| | en_UK |
local.rioxx.author | Starling, Maria Clara V M| | en_UK |
local.rioxx.author | Pereira, Alexandre H| | en_UK |
local.rioxx.author | Maillard, Philippe| | en_UK |
local.rioxx.author | Nogueira, Keiller|0000-0003-3308-6384 | en_UK |
local.rioxx.author | dos Santos, Jefersson A| | en_UK |
local.rioxx.author | Amorim, Camila C| | en_UK |
local.rioxx.project | Project ID unknown|Brazilian National Research Council| | en_UK |
local.rioxx.freetoreaddate | 2273-07-03 | en_UK |
local.rioxx.licence | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved|| | en_UK |
local.rioxx.filename | 1-s2.0-S0048969723045898-main.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 0048-9697 | en_UK |
Appears in Collections: | Computing Science and Mathematics Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1-s2.0-S0048969723045898-main.pdf | Fulltext - Published Version | 9.92 MB | Adobe PDF | Under Permanent Embargo Request a copy |
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.