Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/35585
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNogueira, Keilleren_UK
dc.contributor.authorMaezano Faita-Pinheiro, Mayaraen_UK
dc.contributor.authorRamos, Ana Paulaen_UK
dc.contributor.authorGonçalves, Wesley Nunesen_UK
dc.contributor.authorMarcato Junior, Joséen_UK
dc.contributor.authorSantos, Jefersson A Dosen_UK
dc.date.accessioned2023-11-29T01:00:59Z-
dc.date.available2023-11-29T01:00:59Z-
dc.identifier.urihttp://hdl.handle.net/1893/35585-
dc.description.abstractBinary segmentation is the main task underpinning several remote sensing applications, which are particularly interested in identifying and monitoring a specific cate-gory/object. Although extremely important, such a task has several challenges, including huge intra-class variance for the background and data imbalance. Furthermore, most works tackling this task partially or completely ignore one or both of these challenges and their developments. In this paper, we propose a novel method to perform imbal-anced binary segmentation of remote sensing images based on deep networks, prototypes, and contrastive loss. The proposed approach allows the model to focus on learning the foreground class while alleviating the class imbalance problem by allowing it to concentrate on the most difficult background examples. The results demonstrate that the proposed method outperforms state-of-the-art techniques for imbalanced binary segmentation of remote sensing images while taking much less training time.en_UK
dc.language.isoenen_UK
dc.publisherIEEEen_UK
dc.relationNogueira K, Maezano Faita-Pinheiro M, Ramos AP, Gonçalves WN, Marcato Junior J & Santos JAD (2023) Prototypical Contrastive Network for Imbalanced Aerial Image Segmentation. In: WACV 2024, 04.01.2024-08.01.2024. Piscataway, NJ, USA: IEEE.en_UK
dc.rights© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_UK
dc.titlePrototypical Contrastive Network for Imbalanced Aerial Image Segmentationen_UK
dc.typeConference Paperen_UK
dc.citation.issn2642-9381en_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.contributor.funderBrazilian National Research Councilen_UK
dc.author.emailkeiller.nogueira@stir.ac.uken_UK
dc.citation.conferencedates2024-01-04 - 2024-01-08en_UK
dc.citation.conferencenameWACV 2024en_UK
dc.publisher.addressPiscataway, NJ, USAen_UK
dc.description.notesOutput Status: Forthcomingen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationUniversity of Western São Paulo (UNOESTE)en_UK
dc.contributor.affiliationSao Paulo State University (Universidade Estadual Paulista)en_UK
dc.contributor.affiliationFederal University of Mato Grosso do Sulen_UK
dc.contributor.affiliationFederal University of Mato Grosso do Sulen_UK
dc.contributor.affiliationUniversity of Sheffielden_UK
dc.identifier.wtid1959077en_UK
dc.contributor.orcid0000-0003-3308-6384en_UK
dc.date.accepted2023-11-01en_UK
dcterms.dateAccepted2023-11-01en_UK
dc.date.filedepositdate2023-11-27en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionAMen_UK
local.rioxx.authorNogueira, Keiller|0000-0003-3308-6384en_UK
local.rioxx.authorMaezano Faita-Pinheiro, Mayara|en_UK
local.rioxx.authorRamos, Ana Paula|en_UK
local.rioxx.authorGonçalves, Wesley Nunes|en_UK
local.rioxx.authorMarcato Junior, José|en_UK
local.rioxx.authorSantos, Jefersson A Dos|en_UK
local.rioxx.projectProject ID unknown|Brazilian National Research Council|en_UK
local.rioxx.freetoreaddate2023-11-28en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2023-11-28|en_UK
local.rioxx.filenameWACV2024_binary_segmentation.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source2642-9381en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
WACV2024_binary_segmentation.pdfFulltext - Accepted Version10.07 MBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.