Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/35573
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCuyt, Annieen_UK
dc.contributor.authorLee, Wen-shinen_UK
dc.date.accessioned2023-11-21T01:07:25Z-
dc.date.available2023-11-21T01:07:25Z-
dc.date.issued2023-06-22en_UK
dc.identifier.urihttp://hdl.handle.net/1893/35573-
dc.description.abstractThe nonlinear inverse problem of exponential data fitting is separable since the fitting function is a linear combination of parameterized exponential functions, thus allowing to solve for the linear coefficients separately from the nonlinear parameters. The matrix pencil method, which reformulates the problem statement into a generalized eigenvalue problem for the nonlinear parameters and a structured linear system for the linear parameters, is generally considered as the more stable method to solve the problem computationally. In Section 2 the matrix pencil associated with the classical complex exponential fitting or sparse interpolation problem is summarized and the concepts of dilation and translation are introduced to obtain matrix pencils at different scales. Exponential analysis was earlier generalized to the use of several polynomial basis functions and some operator eigenfunctions. However, in most generalizations a computational scheme in terms of an eigenvalue problem is lacking. In the subsequent Sections 3–6 the matrix pencil formulation, including the dilation and translation paradigm, is generalized to more functions. Each of these periodic, polynomial or special function classes needs a tailored approach, where optimal use is made of the properties of the parameterized elementary or special function used in the sparse interpolation problem under consideration. With each generalization a structured linear matrix pencil is associated, immediately leading to a computational scheme for the nonlinear and linear parameters, respectively from a generalized eigenvalue problem and one or more structured linear systems. Finally, in Section 7 we illustrate the new methods.en_UK
dc.language.isoenen_UK
dc.publisherBMCen_UK
dc.relationCuyt A & Lee W (2023) Multiscale matrix pencils for separable reconstruction problems. <i>Numerical Algorithms</i>. https://doi.org/10.1007/s11075-023-01564-3en_UK
dc.rightsThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectProny problemsen_UK
dc.subjectSeparable problemsen_UK
dc.subjectParametric methodsen_UK
dc.subjectSparse interpolationen_UK
dc.subjectDilationen_UK
dc.subjectTranslationen_UK
dc.subjectStructured matrixen_UK
dc.subjectGeneralized eigenvalue problemen_UK
dc.titleMultiscale matrix pencils for separable reconstruction problemsen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1007/s11075-023-01564-3en_UK
dc.citation.jtitleNumerical Algorithmsen_UK
dc.citation.issn1572-9265en_UK
dc.citation.issn1017-1398en_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderEuropean Commission (Horizon 2020)en_UK
dc.contributor.funderThe Carnegie Trusten_UK
dc.author.emailwen-shin.lee@stir.ac.uken_UK
dc.citation.date22/06/2023en_UK
dc.contributor.affiliationComputing Science and Mathematics - Divisionen_UK
dc.contributor.affiliationComputing Science and Mathematics - Divisionen_UK
dc.identifier.isiWOS:001019283800001en_UK
dc.identifier.scopusid2-s2.0-85162710273en_UK
dc.identifier.wtid1945747en_UK
dc.contributor.orcid0000-0002-2808-3739en_UK
dc.date.accepted2023-04-14en_UK
dcterms.dateAccepted2023-04-14en_UK
dc.date.filedepositdate2023-10-13en_UK
dc.relation.funderprojectEXPOWER: EXPOnential Analysis EmPOWERing Innovationen_UK
dc.relation.funderprojectAdvancing exponential analysis: high-resolution information from sparse and regularly sampled dataen_UK
dc.relation.funderrefGrant Agreement-101008231en_UK
dc.relation.funderrefRIG009853en_UK
rioxxterms.apcpaiden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorCuyt, Annie|en_UK
local.rioxx.authorLee, Wen-shin|0000-0002-2808-3739en_UK
local.rioxx.projectGrant Agreement-101008231|European Commission (Horizon 2020)|en_UK
local.rioxx.projectRIG009853|The Carnegie Trust|en_UK
local.rioxx.freetoreaddate2023-11-17en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2023-11-17|en_UK
local.rioxx.filenames11075-023-01564-3.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1572-9265en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
s11075-023-01564-3.pdfFulltext - Published Version720.33 kBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.