Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/35546
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMunaf, Samuelen_UK
dc.contributor.authorSwingler, Kevinen_UK
dc.contributor.authorBrülisauer, Franzen_UK
dc.contributor.authorO’Hare, Anthonyen_UK
dc.contributor.authorGunn, Georgeen_UK
dc.contributor.authorReeves, Aaronen_UK
dc.date.accessioned2023-11-16T01:04:51Z-
dc.date.available2023-11-16T01:04:51Z-
dc.date.issued2023-12-01en_UK
dc.identifier.other121 (2023)en_UK
dc.identifier.urihttp://hdl.handle.net/1893/35546-
dc.description.abstractWeb scraping and text mining are popular computer science methods deployed by public health researchers to augment traditional epidemiological surveillance. However, within veterinary disease surveillance, such techniques are still in the early stages of development and have not yet been fully utilised. This study presents an exploration into the utility of incorporating internet-based data to better understand smallholder farming communities within the UK, by using online text extraction and the subsequent mining of this data. Web scraping of the livestock fora was conducted, with text mining and topic modelling of data in search of common themes, words, and topics found within the text, in addition to temporal analysis through anomaly detection. Results revealed that some of the key areas in pig forum discussions included identification, age management, containment, and breeding and weaning practices. In discussions about poultry farming, a preference for free-range practices was expressed, along with a focus on feeding practices and addressing red mite infestations. Temporal topic modelling revealed an increase in conversations around pig containment and care, as well as poultry equipment maintenance. Moreover, anomaly detection was discovered to be particularly effective for tracking unusual spikes in forum activity, which may suggest new concerns or trends. Internet data can be a very effective tool in aiding traditional veterinary surveillance methods, but the requirement for human validation of said data is crucial. This opens avenues of research via the incorporation of other dynamic social media data, namely Twitter, in addition to location analysis to highlight spatial patterns.en_UK
dc.language.isoenen_UK
dc.publisherSpringer Science and Business Media LLCen_UK
dc.relationMunaf S, Swingler K, Brülisauer F, O’Hare A, Gunn G & Reeves A (2023) Text mining of veterinary forums for epidemiological surveillance supplementation. <i>Social Network Analysis and Mining</i>, 13 (1), Art. No.: 121 (2023). https://doi.org/10.1007/s13278-023-01131-7en_UK
dc.rightsThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectVeterinary epidemiologyen_UK
dc.subjectInfodemiologyen_UK
dc.subjectInfoveillanceen_UK
dc.subjectSmallholdingen_UK
dc.subjectWeb scrapingen_UK
dc.subjectText miningen_UK
dc.subjectTopic modellingen_UK
dc.subjectAnomaly detectionen_UK
dc.titleText mining of veterinary forums for epidemiological surveillance supplementationen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1007/s13278-023-01131-7en_UK
dc.citation.jtitleSocial Network Analysis and Miningen_UK
dc.citation.issn1869-5469en_UK
dc.citation.issn1869-5450en_UK
dc.citation.volume13en_UK
dc.citation.issue1en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderScotland's Rural Collegeen_UK
dc.author.emailkevin.swingler@stir.ac.uken_UK
dc.citation.date25/09/2023en_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationScotland's Rural College (SRUC)en_UK
dc.contributor.affiliationMathematicsen_UK
dc.contributor.affiliationScotland's Rural College (SRUC)en_UK
dc.contributor.affiliationRTI Internationalen_UK
dc.identifier.isiWOS:001072763900002en_UK
dc.identifier.scopusid2-s2.0-85172405698en_UK
dc.identifier.wtid1942846en_UK
dc.contributor.orcid0000-0002-4517-9433en_UK
dc.contributor.orcid0000-0003-2561-9582en_UK
dc.date.accepted2023-09-08en_UK
dcterms.dateAccepted2023-09-08en_UK
dc.date.filedepositdate2023-11-10en_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorMunaf, Samuel|en_UK
local.rioxx.authorSwingler, Kevin|0000-0002-4517-9433en_UK
local.rioxx.authorBrülisauer, Franz|en_UK
local.rioxx.authorO’Hare, Anthony|0000-0003-2561-9582en_UK
local.rioxx.authorGunn, George|en_UK
local.rioxx.authorReeves, Aaron|en_UK
local.rioxx.projectProject ID unknown|Scotland's Rural College|en_UK
local.rioxx.freetoreaddate2023-11-10en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2023-11-10|en_UK
local.rioxx.filenameText Mining Of Veterinary Forums For Epidemiological Surveillance Supplementation.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1869-5450en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
Text Mining Of Veterinary Forums For Epidemiological Surveillance Supplementation.pdfFulltext - Published Version1.89 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.