Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/35352
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Fyvie, Martin | en_UK |
dc.contributor.author | McCall, John A W | en_UK |
dc.contributor.author | Christie, Lee A | en_UK |
dc.contributor.author | Zavoianu, Alexandru-Ciprian | en_UK |
dc.contributor.author | Brownlee, Alexander E I | en_UK |
dc.contributor.author | Ainslie, Russell | en_UK |
dc.date.accessioned | 2023-09-07T00:00:59Z | - |
dc.date.available | 2023-09-07T00:00:59Z | - |
dc.identifier.uri | http://hdl.handle.net/1893/35352 | - |
dc.description.abstract | The use of Artificial Intelligence-driven solutions in domains involving end-user interaction and cooperation has been continually growing. This has also lead to an increasing need to communicate crucial information to end-users about algorithm behaviour and the quality of solutions. In this paper, we apply our method of search trajectory mining through decomposition to the solutions created by a Genetic Algorithm-a non-deterministic, population-based metaheuristic. We complement this method with the use of One-Way ANOVA statistical testing to help identify explanatory features found in the search trajectories-subsets of the set of optimization variables having both high and low influence on the search behaviour of the GA and solution quality. This allows us to highlight these to an end-user to allow for greater flexibility in solution selection. We demonstrate the techniques on a real-world staff rostering problem and show how, together, they identify the personnel who are critical to the optimality of the rosters being created. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | Springer | en_UK |
dc.relation | Fyvie M, McCall JAW, Christie LA, Zavoianu A, Brownlee AEI & Ainslie R (2023) Explaining A Staff Rostering Problem By Mining Trajectory Variance Structures. In: <i>TBC</i>. Lecture Notes in Artificial Intelligence. AI-2023 Forty-third SGAI International Conference on Artificial Intelligence, Cambridge, 12.12.2023-14.12.2023. Cham, Switzerland: Springer. | en_UK |
dc.relation.ispartofseries | Lecture Notes in Artificial Intelligence | en_UK |
dc.rights | This item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. | en_UK |
dc.rights.uri | https://storre.stir.ac.uk/STORREEndUserLicence.pdf | en_UK |
dc.subject | Evolutionary Algorithms | en_UK |
dc.subject | PCA | en_UK |
dc.subject | Explainability | en_UK |
dc.subject | Population Diversity | en_UK |
dc.title | Explaining A Staff Rostering Problem By Mining Trajectory Variance Structures | en_UK |
dc.type | Conference Paper | en_UK |
dc.rights.embargodate | 2026-08-29 | en_UK |
dc.rights.embargoreason | [SGAI_2023___Explaining_A_Staff_Rostering_Problem_By_Mining_Trajectory_Variance_Structures.pdf] Publisher requires embargo of 12 months after publication. | en_UK |
dc.citation.issn | 2945-9133 | en_UK |
dc.type.status | AM - Accepted Manuscript | en_UK |
dc.contributor.funder | Datalab | en_UK |
dc.author.email | alexander.brownlee@stir.ac.uk | en_UK |
dc.citation.btitle | TBC | en_UK |
dc.citation.conferencedates | 2023-12-12 - 2023-12-14 | en_UK |
dc.citation.conferencelocation | Cambridge | en_UK |
dc.citation.conferencename | AI-2023 Forty-third SGAI International Conference on Artificial Intelligence | en_UK |
dc.publisher.address | Cham, Switzerland | en_UK |
dc.description.notes | Output Status: Forthcoming | en_UK |
dc.contributor.affiliation | Robert Gordon University | en_UK |
dc.contributor.affiliation | Robert Gordon University | en_UK |
dc.contributor.affiliation | Robert Gordon University | en_UK |
dc.contributor.affiliation | Robert Gordon University | en_UK |
dc.contributor.affiliation | Computing Science | en_UK |
dc.contributor.affiliation | BT Group Plc | en_UK |
dc.identifier.wtid | 1932404 | en_UK |
dc.contributor.orcid | 0000-0003-2892-5059 | en_UK |
dc.date.accepted | 2023-08-29 | en_UK |
dcterms.dateAccepted | 2023-08-29 | en_UK |
dc.date.filedepositdate | 2023-08-30 | en_UK |
rioxxterms.apc | not required | en_UK |
rioxxterms.type | Conference Paper/Proceeding/Abstract | en_UK |
rioxxterms.version | AM | en_UK |
local.rioxx.author | Fyvie, Martin| | en_UK |
local.rioxx.author | McCall, John A W| | en_UK |
local.rioxx.author | Christie, Lee A| | en_UK |
local.rioxx.author | Zavoianu, Alexandru-Ciprian| | en_UK |
local.rioxx.author | Brownlee, Alexander E I|0000-0003-2892-5059 | en_UK |
local.rioxx.author | Ainslie, Russell| | en_UK |
local.rioxx.project | Project ID unknown|Datalab| | en_UK |
local.rioxx.freetoreaddate | 2026-08-29 | en_UK |
local.rioxx.licence | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2026-08-28 | en_UK |
local.rioxx.licence | https://storre.stir.ac.uk/STORREEndUserLicence.pdf|2026-08-29| | en_UK |
local.rioxx.filename | SGAI_2023___Explaining_A_Staff_Rostering_Problem_By_Mining_Trajectory_Variance_Structures.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 2945-9133 | en_UK |
Appears in Collections: | Computing Science and Mathematics Conference Papers and Proceedings |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
SGAI_2023___Explaining_A_Staff_Rostering_Problem_By_Mining_Trajectory_Variance_Structures.pdf | Fulltext - Accepted Version | 485.3 kB | Adobe PDF | Under Embargo until 2026-08-29 Request a copy |
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.