Please use this identifier to cite or link to this item:
Appears in Collections:Biological and Environmental Sciences Journal Articles
Peer Review Status: Refereed
Title: The primary molecular influences of marine plastisphere formation and function: Novel insights into organism -organism and -co-pollutant interactions.
Author(s): Lee, Charlotte
Messer, Lauren
Holland, Sophie
Gutierrez, Tony
Quilliam, Richard
Matallana-Surget, Sabine
Contact Email:
Issue Date: 21-Jun-2023
Date Deposited: 8-Jun-2023
Citation: Lee C, Messer L, Holland S, Gutierrez T, Quilliam R & Matallana-Surget S (2023) The primary molecular influences of marine plastisphere formation and function: Novel insights into organism -organism and -co-pollutant interactions.. <i>Critical Reviews in Environmental Science and Technology</i>, pp. 1-24.
Abstract: Marine plastic pollution is rapidly colonized by a biofilm of microorganisms associated with the control of biogeochemical cycles, plastic biodegradation, and potentially pathogenic activities. An extensive number of studies have described the taxonomic composition of this biofilm, referred to as the ‘plastisphere’, and previous reviews have reported on the influence of location, plastic type, and plastic-biodegradation ability on plastisphere formation. However, few studies have investigated the metabolic activity of this complex biofilm and how microbial pathogenicity and bioremediation could be regulated in this ecosystem. In this review, we highlight the understudied molecular and abiotic factors influencing plastisphere formation and microbial functioning beyond taxonomic description. In this context, we critically discuss the impacts of (i) organism-organism interaction, (ii) microbial cell wall composition, and (iii) commonly encountered plastic-bound co-pollutants (heavy metals, persistent organic pollutants, UV filters). For the first time, we review the anticipated impact of lipophilic organic UV-filters – found in plastic additives and sunscreens – on the plastisphere due to their reported affinity for plastics, persistence, and co-location at high concentrations in touristic coastal environments. Herein, we integrate the findings of 34 global studies exploring plastisphere composition, 35 studies quantifying co-pollutant concentrations, and draw upon 52 studies of cell -cell and -substrate interaction to deduce the inferred, yet still unknown, metabolic interactions within this niche. Finally, we provide novel future directions for the advancement of functional plastisphere research applying advanced molecular tools to new, and appropriate research questions.
DOI Link: 10.1080/10643389.2023.2224182
Rights: © 2023 The Author(s). Published with license by Taylor & Francis Group, LLC. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.
Notes: ‘Output Status: Forthcoming/Available Online’.
Licence URL(s):

This item is protected by original copyright

A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved

If you believe that any material held in STORRE infringes copyright, please contact providing details and we will remove the Work from public display in STORRE and investigate your claim.