Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/34876
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOlan, Femien_UK
dc.contributor.authorOgiemwonyi Arakpogun, Emmanuelen_UK
dc.contributor.authorSuklan, Janaen_UK
dc.contributor.authorNakpodia, Franklinen_UK
dc.contributor.authorDamij, Nadjaen_UK
dc.contributor.authorJayawickrama, Uchithaen_UK
dc.date.accessioned2023-02-22T01:00:15Z-
dc.date.available2023-02-22T01:00:15Z-
dc.date.issued2022-06en_UK
dc.identifier.urihttp://hdl.handle.net/1893/34876-
dc.description.abstractThe evolution of organizational processes and performance over the past decade has been largely enabled by cutting-edge technologies such as data analytics, artificial intelligence (AI), and business intelligence applications. The increasing use of cutting-edge technologies has boosted effectiveness, efficiency and productivity, as existing and new knowledge within an organization continues to improve AI abilities. Consequently, AI can identify redundancies within business processes and offer optimal resource utilization for improved performance. However, the lack of integration of existing and new knowledge makes it problematic to ascertain the required nature of knowledge needed for AI’s ability to optimally improve organizational performance. Hence, organizations continue to face reoccurring challenges in their business processes, competition, technological advancement and finding new solutions in a fast-changing society. To address this knowledge gap, this study applies a fuzzy set-theoretic approach underpinned by the conceptualization of AI, knowledge sharing (KS) and organizational performance (OP). Our result suggests that the implementation of AI technologies alone is not sufficient in improving organizational performance. Rather, a complementary system that combines AI and KS provides a more sustainable organizational performance strategy for business operations in a constantly changing digitized society.en_UK
dc.language.isoenen_UK
dc.publisherElsevier BVen_UK
dc.relationOlan F, Ogiemwonyi Arakpogun E, Suklan J, Nakpodia F, Damij N & Jayawickrama U (2022) Artificial intelligence and knowledge sharing: Contributing factors to organizational performance. <i>Journal of Business Research</i>, 145, pp. 605-615. https://doi.org/10.1016/j.jbusres.2022.03.008en_UK
dc.rightsThis is an open access article distributed under the terms of the Creative Commons CC-BY license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. You are not required to obtain permission to reuse this article.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectArtificial intelligenceen_UK
dc.subjectBusiness processesen_UK
dc.subjectKnowledge sharingen_UK
dc.subjectOrganizational performanceen_UK
dc.subjectPerformance managementen_UK
dc.titleArtificial intelligence and knowledge sharing: Contributing factors to organizational performanceen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1016/j.jbusres.2022.03.008en_UK
dc.citation.jtitleJournal of Business Researchen_UK
dc.citation.issn1477-7029en_UK
dc.citation.issn0148-2963en_UK
dc.citation.volume145en_UK
dc.citation.spage605en_UK
dc.citation.epage615en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderNorthumbria Universityen_UK
dc.author.emailemmanuel.arakpogun@stir.ac.uken_UK
dc.citation.date20/03/2022en_UK
dc.contributor.affiliationNewcastle Universityen_UK
dc.contributor.affiliationNewcastle Universityen_UK
dc.contributor.affiliationDurham Universityen_UK
dc.contributor.affiliationDurham Universityen_UK
dc.contributor.affiliationNewcastle Universityen_UK
dc.contributor.affiliationLoughborough Universityen_UK
dc.identifier.wtid1879514en_UK
dc.contributor.orcid0000-0002-7377-9882en_UK
dc.contributor.orcid0000-0001-8665-6593en_UK
dc.contributor.orcid0000-0001-7712-5328en_UK
dc.date.accepted2022-03-05en_UK
dcterms.dateAccepted2022-03-05en_UK
dc.date.filedepositdate2023-02-08en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorOlan, Femi|0000-0002-7377-9882en_UK
local.rioxx.authorOgiemwonyi Arakpogun, Emmanuel|en_UK
local.rioxx.authorSuklan, Jana|0000-0001-8665-6593en_UK
local.rioxx.authorNakpodia, Franklin|0000-0001-7712-5328en_UK
local.rioxx.authorDamij, Nadja|en_UK
local.rioxx.authorJayawickrama, Uchitha|en_UK
local.rioxx.projectProject ID unknown|Northumbria University|http://dx.doi.org/10.13039/100010052en_UK
local.rioxx.freetoreaddate2023-02-17en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2023-02-17|en_UK
local.rioxx.filename1-s2.0-S0148296322002387-main.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1477-7029en_UK
Appears in Collections:Management, Work and Organisation Journal Articles

Files in This Item:
File Description SizeFormat 
1-s2.0-S0148296322002387-main.pdfFulltext - Published Version1.36 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.