Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/3480
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMassink, Miekeen_UK
dc.contributor.authorLatella, Diegoen_UK
dc.contributor.authorBracciali, Andreaen_UK
dc.contributor.authorHarrison, Michael Den_UK
dc.contributor.authorHillston, Janeen_UK
dc.date.accessioned2013-06-09T07:30:26Z-
dc.date.available2013-06-09T07:30:26Z-
dc.date.issued2012en_UK
dc.identifier.urihttp://hdl.handle.net/1893/3480-
dc.description.abstractPervasive environments offer an increasing number of services to a large number of people moving within these environments, including timely information about where to go and when, and contextual information about the surrounding environment. This information may be conveyed to people through public displays or direct to a person's mobile phone. People using these services interact with the system but they are also meeting other people and performing other activities as relevant opportunities arise. The design of such systems and the analysis of collective dynamic behaviour of people within them is a challenging problem. We present results on a novel usage of a scalable analysis technique in this context. We show the validity of an approach based on stochastic process-algebraic models by focussing on a representative example, i.e. emergency egress. The chosen case study has the advantage that detailed data is available from studies employing alternative analysis methods, making cross-methodology comparison possible. We also illustrate how realistic, context-dependent human behaviour, often observed in emergency egress, can naturally be embedded in the models, and how the effect of such behaviour on evacuation can be analysed in an efficient and scalable way. The proposed approach encompasses both the agent modelling viewpoint, as system behaviour emerges from specific (discrete) agent interaction, and the population viewpoint, when classes of homogeneous individuals are considered for a (continuous)approximation of overall system behaviour.en_UK
dc.language.isoenen_UK
dc.publisherSpringer Verlagen_UK
dc.relationMassink M, Latella D, Bracciali A, Harrison MD & Hillston J (2012) Scalable context-dependent analysis of emergency egress models. Formal Aspects of Computing, 24 (2), pp. 267-302. https://doi.org/10.1007/s00165-011-0188-1en_UK
dc.rightsPublished in Formal Aspects of Computing by Springer Verlag. The original publication is available at www.springerlink.com.en_UK
dc.subjectcollective behaviouren_UK
dc.subjectvalidationen_UK
dc.subjectstochastic process algebraen_UK
dc.subjectfluid flowen_UK
dc.subjectcontext dependencyen_UK
dc.subjectLinear and multilinear algebraen_UK
dc.subjectmatrix theoryen_UK
dc.subjectPartial differential equationsen_UK
dc.subjectInduction (Mathematics)en_UK
dc.titleScalable context-dependent analysis of emergency egress modelsen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1007/s00165-011-0188-1en_UK
dc.citation.jtitleFormal Aspects of Computingen_UK
dc.citation.issn1433-299Xen_UK
dc.citation.issn0934-5043en_UK
dc.citation.volume24en_UK
dc.citation.issue2en_UK
dc.citation.spage267en_UK
dc.citation.epage302en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.author.emailabb@cs.stir.ac.uken_UK
dc.contributor.affiliationIstituto di Scienza e Tecnologie dell’Informazioneen_UK
dc.contributor.affiliationIstituto di Scienza e Tecnologie dell’Informazioneen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationNewcastle Universityen_UK
dc.contributor.affiliationUniversity of Edinburghen_UK
dc.identifier.isiWOS:000303537500006en_UK
dc.identifier.scopusid2-s2.0-84861571783en_UK
dc.identifier.wtid829880en_UK
dc.contributor.orcid0000-0003-1451-9260en_UK
dcterms.dateAccepted2012-12-31en_UK
dc.date.filedepositdate2011-11-21en_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorMassink, Mieke|en_UK
local.rioxx.authorLatella, Diego|en_UK
local.rioxx.authorBracciali, Andrea|0000-0003-1451-9260en_UK
local.rioxx.authorHarrison, Michael D|en_UK
local.rioxx.authorHillston, Jane|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2012-12-31en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2012-12-31en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2012-12-31|en_UK
local.rioxx.filenameScalable Context-dependent Analysis of Emergency Egress Models.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source0934-5043en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
Scalable Context-dependent Analysis of Emergency Egress Models.pdfFulltext - Accepted Version1.31 MBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.