Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/34747
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGoranova, Milaen_UK
dc.contributor.authorOchoa, Gabrielaen_UK
dc.contributor.authorMaier, Patricken_UK
dc.contributor.authorHoyle, Andrewen_UK
dc.date.accessioned2023-02-01T01:00:34Z-
dc.date.available2023-02-01T01:00:34Z-
dc.date.issued2022-11en_UK
dc.identifier.other102405en_UK
dc.identifier.urihttp://hdl.handle.net/1893/34747-
dc.description.abstractAntimicrobial resistance is one of the biggest threats to global health, food security, and development. Antibiotic overuse and misuse are the main drivers for the emergence of resistance. It is crucial to optimise the use of existing antibiotics in order to improve medical outcomes, decrease toxicity and reduce the emergence of resistance. We formulate the design of antibiotic dosing regimens as an optimisation problem, and use an evolutionary algorithm suited to continuous optimisation (differential evolution) to solve it. Regimens are represented as vectors of real numbers encoding daily doses, which can vary across the treatment duration. A stochastic mathematical model of bacterial infections with tuneable resistance levels is used to evaluate the effectiveness of evolved regimens. The objective is to minimise the treatment failure rate, subject to a constraint on the maximum total antibiotic used. We consider simulations with different levels of bacterial resistance, two ways of administering the drug (orally and intravenously), as well as coinfections with two strains of bacteria. Our approach produced effective dosing regimens, with an average improvement in lowering the failure rate 30%, when compared with standard fixed-daily-dose regimens with the same total amount of antibiotic.en_UK
dc.language.isoenen_UK
dc.publisherElsevier BVen_UK
dc.relationGoranova M, Ochoa G, Maier P & Hoyle A (2022) Evolutionary optimisation of antibiotic dosing regimens for bacteria with different levels of resistance. <i>Artificial Intelligence in Medicine</i>, 133, Art. No.: 102405. https://doi.org/10.1016/j.artmed.2022.102405en_UK
dc.rightsThis is an open access article distributed under the terms of the Creative Commons CC-BY license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. You are not required to obtain permission to reuse this article.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectAntimicrobial resistanceen_UK
dc.subjectEvolutionary algorithmsen_UK
dc.subjectDifferential evolutionen_UK
dc.subjectOptimisationen_UK
dc.subjectMathematical modellingen_UK
dc.subjectPharmacokinetics/pharmacodynamics modellingen_UK
dc.subjectMICen_UK
dc.subjectAntibiotic dosingen_UK
dc.subjectregimensen_UK
dc.titleEvolutionary optimisation of antibiotic dosing regimens for bacteria with different levels of resistanceen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1016/j.artmed.2022.102405en_UK
dc.identifier.pmid36328666en_UK
dc.citation.jtitleArtificial Intelligence in Medicineen_UK
dc.citation.issn1873-2860en_UK
dc.citation.issn0933-3657en_UK
dc.citation.volume133en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.author.emailm.g.goranova@stir.ac.uken_UK
dc.citation.date24/09/2022en_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.scopusid2-s2.0-85141262972en_UK
dc.identifier.wtid1842961en_UK
dc.contributor.orcid0000-0001-9436-892Xen_UK
dc.contributor.orcid0000-0001-7649-5669en_UK
dc.contributor.orcid0000-0002-7051-8169en_UK
dc.contributor.orcid0000-0002-9117-7041en_UK
dc.date.accepted2022-09-15en_UK
dcterms.dateAccepted2022-09-15en_UK
dc.date.filedepositdate2023-01-06en_UK
rioxxterms.apcpaiden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorGoranova, Mila|0000-0001-9436-892Xen_UK
local.rioxx.authorOchoa, Gabriela|0000-0001-7649-5669en_UK
local.rioxx.authorMaier, Patrick|0000-0002-7051-8169en_UK
local.rioxx.authorHoyle, Andrew|0000-0002-9117-7041en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2023-01-06en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2023-01-06|en_UK
local.rioxx.filename1-s2.0-S0933365722001579-main.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1873-2860en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
1-s2.0-S0933365722001579-main.pdfFulltext - Published Version895.93 kBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.