Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/34653
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWang, Xinweien_UK
dc.contributor.authorBrownlee, Alexander E Ien_UK
dc.contributor.authorWeiszer, Michalen_UK
dc.contributor.authorWoodward, John Ren_UK
dc.contributor.authorMahfouf, Mahdien_UK
dc.contributor.authorChen, Junen_UK
dc.date.accessioned2022-11-11T01:01:33Z-
dc.date.available2022-11-11T01:01:33Z-
dc.date.issued2022en_UK
dc.identifier.urihttp://hdl.handle.net/1893/34653-
dc.description.abstractAirports and their related operations have become the major bottlenecks to the entire air traffic management system, raising predictability, safety and environmental concerns. One of the underpinning techniques for digital and sustainable air transport is airport ground movement optimisation. Currently, real ground movement data is made freely available for the majority of aircraft at many airports. However, the recorded data is not accurate enough due to measurement errors and general uncertainties. In this paper, we aim to develop a new interval type-2 fuzzy logic based map matching algorithm, which can match each raw data point to the correct airport segment. To this aim, we first specifically design a set of interval type-2 Sugeno fuzzy rules and their associated rule weights, as well as the model output, based on preliminary experiments and sensitivity tests. Then, the fuzzy membership functions are fine-tuned by a particle swarm optimisation algorithm. Moreover, an extra checking step using the available data is further integrated to improve map matching accuracy. Using the real-world aircraft movement data at Hong Kong Airport, we compared the developed algorithm with other well-known map matching algorithms. Experimental results show that the designed interval type-2 fuzzy rules have the potential to handle map matching uncertainties, and the extra checking step can effectively improve map matching accuracy. The proposed algorithm is demonstrated to be robust and achieve the best map matching accuracy of over 96% without compromising the run time.en_UK
dc.language.isoenen_UK
dc.publisherInstitute of Electrical and Electronics Engineersen_UK
dc.relationWang X, Brownlee AEI, Weiszer M, Woodward JR, Mahfouf M & Chen J (2022) An Interval Type-2 Fuzzy Logic Based Map Matching Algorithm for Airport Ground Movements. <i>IEEE Transactions on Fuzzy Systems</i>, 31 (2), pp. 582-595. https://doi.org/10.1109/TFUZZ.2022.3221793en_UK
dc.rights© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_UK
dc.subjectIndex Terms-ADS-Ben_UK
dc.subjectairport ground movementen_UK
dc.subjectinterval type- 2 fuzzy logicen_UK
dc.subjectmap matchingen_UK
dc.titleAn Interval Type-2 Fuzzy Logic Based Map Matching Algorithm for Airport Ground Movementsen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1109/TFUZZ.2022.3221793en_UK
dc.citation.jtitleIEEE Transactions on Fuzzy Systemsen_UK
dc.citation.issn1941-0034en_UK
dc.citation.issn1063-6706en_UK
dc.citation.volume31en_UK
dc.citation.issue2en_UK
dc.citation.spage582en_UK
dc.citation.epage595en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.contributor.funderEPSRC Engineering and Physical Sciences Research Councilen_UK
dc.author.emailalexander.brownlee@stir.ac.uken_UK
dc.citation.date21/11/2022en_UK
dc.contributor.affiliationQueen Mary, University of Londonen_UK
dc.contributor.affiliationComputing Science and Mathematics - Divisionen_UK
dc.contributor.affiliationQueen Mary, University of Londonen_UK
dc.contributor.affiliationQueen Mary, University of Londonen_UK
dc.contributor.affiliationUniversity of Sheffielden_UK
dc.contributor.affiliationQueen Mary, University of Londonen_UK
dc.identifier.scopusid2-s2.0-85144021811en_UK
dc.identifier.wtid1853358en_UK
dc.contributor.orcid0000-0003-2892-5059en_UK
dc.date.accepted2022-11-03en_UK
dcterms.dateAccepted2022-11-03en_UK
dc.date.filedepositdate2022-11-04en_UK
dc.relation.funderprojectTRANSIT: Towards a Robust Airport Decision Support System for Intelligent Taxiingen_UK
dc.relation.funderrefEP/N029577/1en_UK
dc.subject.tagAirport Operationsen_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorWang, Xinwei|en_UK
local.rioxx.authorBrownlee, Alexander E I|0000-0003-2892-5059en_UK
local.rioxx.authorWeiszer, Michal|en_UK
local.rioxx.authorWoodward, John R|en_UK
local.rioxx.authorMahfouf, Mahdi|en_UK
local.rioxx.authorChen, Jun|en_UK
local.rioxx.projectEP/N029577/1|Engineering and Physical Sciences Research Council|http://dx.doi.org/10.13039/501100000266en_UK
local.rioxx.freetoreaddate2022-11-07en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2022-11-07|en_UK
local.rioxx.filenameTFS_R1 (1).pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1941-0034en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
TFS_R1 (1).pdfFulltext - Accepted Version6.04 MBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.