Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/34524
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Werther, Mortimer | en_UK |
dc.contributor.author | Odermatt, Daniel | en_UK |
dc.contributor.author | Simis, Stefan G H | en_UK |
dc.contributor.author | Gurlin, Daniela | en_UK |
dc.contributor.author | Jorge, Daniel S F | en_UK |
dc.contributor.author | Loisel, Hubert | en_UK |
dc.contributor.author | Hunter, Peter D | en_UK |
dc.contributor.author | Tyler, Andrew N | en_UK |
dc.contributor.author | Spyrakos, Evangelos | en_UK |
dc.date.accessioned | 2022-07-21T00:03:03Z | - |
dc.date.available | 2022-07-21T00:03:03Z | - |
dc.date.issued | 2022-08 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/34524 | - |
dc.description.abstract | Remote sensing product uncertainties for phytoplankton chlorophyll-a (chla) concentration in oligotrophic and mesotrophic lakes and reservoirs were characterised across 13 existing algorithms using an in situ dataset of water constituent concentrations, inherent optical properties (IOPs) and remote-sensing reflectance spectra collected from 53 lakes and reservoirs (346 observations; chla concentration < 10 mg m-3, dataset median 2.5 mg m-3). Substantial shortcomings in retrieval accuracy were evident with median absolute percentage differences (MAPD) > 37% and mean absolute differences (MAD) > 1.82 mg m-3. Using the Hyperspectral Imager for the Coastal Ocean (HICO) band configuration improved the accuracies by 10–20% compared to the Ocean and Land Colour Instrument (OLCI) configuration. Retrieval uncertainties were attributed to optical and biogeochemical properties using machine learning models through SHapley Additive exPlanations (SHAP). The chla retrieval uncertainty of most semi-analytical algorithms was primarily determined by phytoplankton absorption and composition. Machine learning chla algorithms showed relatively high sensitivity to light absorption by coloured dissolved organic matter (CDOM) and non-algal pigment particulates (NAP). In contrast, the uncertainties of red/near-infrared algorithms, which aim for lower uncertainty in the presence of CDOM and NAP, were primarily explained through the total absorption by phytoplankton at 673 nm and variables related to backscatter. Based on these uncertainty characterisations we discuss the suitability of the evaluated algorithm formulations, and we make recommendations for chla estimation improvements in oligo- and mesotrophic lakes and reservoirs. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | Elsevier BV | en_UK |
dc.relation | Werther M, Odermatt D, Simis SGH, Gurlin D, Jorge DSF, Loisel H, Hunter PD, Tyler AN & Spyrakos E (2022) Characterising retrieval uncertainty of chlorophyll-a algorithms in oligotrophic and mesotrophic lakes and reservoirs. ISPRS Journal of Photogrammetry and Remote Sensing, 190, pp. 279-300. https://doi.org/10.1016/j.isprsjprs.2022.06.015 | en_UK |
dc.rights | This is an open access article distributed under the terms of the Creative Commons CC-BY license (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. You are not required to obtain permission to reuse this article. | en_UK |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en_UK |
dc.subject | Chlorophyll-a | en_UK |
dc.subject | Lakes | en_UK |
dc.subject | Uncertainties | en_UK |
dc.subject | Shapley additive explanations | en_UK |
dc.subject | Machine learning | en_UK |
dc.title | Characterising retrieval uncertainty of chlorophyll-a algorithms in oligotrophic and mesotrophic lakes and reservoirs | en_UK |
dc.type | Journal Article | en_UK |
dc.identifier.doi | 10.1016/j.isprsjprs.2022.06.015 | en_UK |
dc.citation.jtitle | ISPRS Journal of Photogrammetry and Remote Sensing | en_UK |
dc.citation.issn | 0924-2716 | en_UK |
dc.citation.volume | 190 | en_UK |
dc.citation.spage | 279 | en_UK |
dc.citation.epage | 300 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.citation.peerreviewed | Refereed | en_UK |
dc.type.status | VoR - Version of Record | en_UK |
dc.contributor.funder | European Commission (Horizon 2020) | en_UK |
dc.citation.date | 08/07/2022 | en_UK |
dc.contributor.affiliation | Biological and Environmental Sciences | en_UK |
dc.contributor.affiliation | Swiss Federal Institute of Aquatic Science and Technology (Eawag) | en_UK |
dc.contributor.affiliation | Plymouth Marine Laboratory | en_UK |
dc.contributor.affiliation | Wisconsin Department of Natural Resources | en_UK |
dc.contributor.affiliation | University of Littoral Côte d'Opale | en_UK |
dc.contributor.affiliation | University of Littoral Côte d'Opale | en_UK |
dc.contributor.affiliation | Biological and Environmental Sciences | en_UK |
dc.contributor.affiliation | Biological and Environmental Sciences | en_UK |
dc.contributor.affiliation | Biological and Environmental Sciences | en_UK |
dc.identifier.wtid | 1827534 | en_UK |
dc.contributor.orcid | 0000-0001-7269-795X | en_UK |
dc.contributor.orcid | 0000-0003-0604-5827 | en_UK |
dc.date.accepted | 2022-06-23 | en_UK |
dcterms.dateAccepted | 2022-06-23 | en_UK |
dc.date.filedepositdate | 2022-07-20 | en_UK |
dc.relation.funderproject | Multiscale Observation Networks for Optical Monitoring of Coastal Waters, Lakes and Estuaries | en_UK |
dc.relation.funderref | 776480 | en_UK |
rioxxterms.apc | paid | en_UK |
rioxxterms.type | Journal Article/Review | en_UK |
rioxxterms.version | VoR | en_UK |
local.rioxx.author | Werther, Mortimer| | en_UK |
local.rioxx.author | Odermatt, Daniel| | en_UK |
local.rioxx.author | Simis, Stefan G H| | en_UK |
local.rioxx.author | Gurlin, Daniela| | en_UK |
local.rioxx.author | Jorge, Daniel S F| | en_UK |
local.rioxx.author | Loisel, Hubert| | en_UK |
local.rioxx.author | Hunter, Peter D|0000-0001-7269-795X | en_UK |
local.rioxx.author | Tyler, Andrew N|0000-0003-0604-5827 | en_UK |
local.rioxx.author | Spyrakos, Evangelos| | en_UK |
local.rioxx.project | 776480|European Commission (Horizon 2020)| | en_UK |
local.rioxx.freetoreaddate | 2022-07-20 | en_UK |
local.rioxx.licence | http://creativecommons.org/licenses/by/4.0/|2022-07-20| | en_UK |
local.rioxx.filename | 1-s2.0-S0924271622001721-main.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 0924-2716 | en_UK |
Appears in Collections: | Biological and Environmental Sciences Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1-s2.0-S0924271622001721-main.pdf | Fulltext - Published Version | 12.9 MB | Adobe PDF | View/Open |
This item is protected by original copyright |
A file in this item is licensed under a Creative Commons License
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.