Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/34509
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPaz, Andreaen_UK
dc.contributor.authorSilva, Thiago Sen_UK
dc.contributor.authorCarnaval, Ana Cen_UK
dc.date.accessioned2022-07-15T00:04:23Z-
dc.date.available2022-07-15T00:04:23Z-
dc.date.issued2022en_UK
dc.identifier.othere13534en_UK
dc.identifier.urihttp://hdl.handle.net/1893/34509-
dc.description.abstractMonitoring biodiversity change is key to effective conservation policy. While it is difficult to establish in situ biodiversity monitoring programs at broad geographical scales, remote sensing advances allow for near-real time Earth observations that may help with this goal. We combine periodical and freely available remote sensing information describing temperature and precipitation with curated biological information from several groups of animals and plants in the Brazilian Atlantic rainforest to design an indirect remote sensing framework that monitors potential loss and gain of biodiversity in near-real time. Using data from biological collections and information from repeated field inventories, we demonstrate that this framework has the potential to accurately predict trends of biodiversity change for both taxonomic and phylogenetic diversity. The framework identifies areas of potential diversity loss more accurately than areas of species gain, and performs best when applied to broadly distributed groups of animals and plants.en_UK
dc.language.isoenen_UK
dc.publisherPeerJen_UK
dc.relationPaz A, Silva TS & Carnaval AC (2022) A framework for near-real time monitoring of diversity patterns based on indirect remote sensing, with an application in the Brazilian Atlantic rainforest. PeerJ, 10, Art. No.: e13534. https://doi.org/10.7717/peerj.13534en_UK
dc.rights© 2022 Paz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectBiodiversityen_UK
dc.subjectPredictionen_UK
dc.subjectMonitoringen_UK
dc.subjectRichnessen_UK
dc.subjectPhylogenetic diversityen_UK
dc.titleA framework for near-real time monitoring of diversity patterns based on indirect remote sensing, with an application in the Brazilian Atlantic rainforesten_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.7717/peerj.13534en_UK
dc.identifier.pmid35789655en_UK
dc.citation.jtitlePeerJen_UK
dc.citation.issn2167-8359en_UK
dc.citation.volume10en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.citation.date29/06/2022en_UK
dc.contributor.affiliationCity College of New Yorken_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.contributor.affiliationCity College of New Yorken_UK
dc.identifier.scopusid2-s2.0-85133481662en_UK
dc.identifier.wtid1828159en_UK
dc.contributor.orcid0000-0001-8174-0489en_UK
dc.date.accepted2022-05-12en_UK
dcterms.dateAccepted2022-05-12en_UK
dc.date.filedepositdate2022-07-14en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorPaz, Andrea|en_UK
local.rioxx.authorSilva, Thiago S|0000-0001-8174-0489en_UK
local.rioxx.authorCarnaval, Ana C|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2022-07-14en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2022-07-14|en_UK
local.rioxx.filenamepeerj-13534.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source2167-8359en_UK
Appears in Collections:Biological and Environmental Sciences Journal Articles

Files in This Item:
File Description SizeFormat 
peerj-13534.pdfFulltext - Published Version5.95 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.