Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/34483
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChowdhury, Ipshita Royen_UK
dc.contributor.authorBhowmik, Deepayanen_UK
dc.date.accessioned2022-07-06T00:05:37Z-
dc.date.available2022-07-06T00:05:37Z-
dc.date.issued2022en_UK
dc.identifier.urihttp://hdl.handle.net/1893/34483-
dc.description.abstractExponential rise of Internet increases the risk of cyber attack related incidents which are generally caused by wide spread frequency of new malware generation. Different types of malware families have complex, dynamic behaviours and characteristics which can cause a novel and targeted attack in a cyber-system. Existence of large volume of malware types with frequent new additions hinders cyber resilience effort. To address the gap, we propose a new ontology driven framework that captures recent malware behaviours. According to code structure malware can be divided into three categories: basic, polymorphic and metamorphic. Packing or code obfuscation is also a technique adopted by the malware developers to make the code unreadable and avoid detection. Given that ontology techniques are useful to express the domain knowledge meaningfully , this paper aims to develop an ontology for dynamic analysis of malware behaviour and to capture metamorphic and polymorphic malware behaviour. This will be helpful to understand malicious behaviour exhibited by new generation malware samples and changes in their code structure. The proposed framework includes 14 malware families with their sub-families and 3 types of malware code-structure with their individuals. With a focus on malware behaviour the proposed ontology depicts the relations among malware families and malware code-structures with their respective behaviour.en_UK
dc.language.isoenen_UK
dc.publisherIEEEen_UK
dc.relationChowdhury IR & Bhowmik D (2022) Capturing Malware Behaviour with Ontology-based Knowledge Graphs. In: <i>2022 IEEE Conference on Dependable and Secure Computing (DSC)</i>. IEEE Conference on Dependable and Secure Computing (IEEE DSC 2022), Edinburgh, 22.06.2022-24.06.2022. Piscataway, NJ, USA: IEEE. https://doi.org/10.1109/DSC54232.2022.9888860en_UK
dc.rights© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_UK
dc.subjectOntologyen_UK
dc.subjectMalwareen_UK
dc.subjectMetamorphicen_UK
dc.subjectPolymorphicen_UK
dc.subjectPackingen_UK
dc.titleCapturing Malware Behaviour with Ontology-based Knowledge Graphsen_UK
dc.typeConference Paperen_UK
dc.identifier.doi10.1109/DSC54232.2022.9888860en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.author.emaildeepayan.bhowmik@stir.ac.uken_UK
dc.citation.btitle2022 IEEE Conference on Dependable and Secure Computing (DSC)en_UK
dc.citation.conferencedates2022-06-22 - 2022-06-24en_UK
dc.citation.conferencelocationEdinburghen_UK
dc.citation.conferencenameIEEE Conference on Dependable and Secure Computing (IEEE DSC 2022)en_UK
dc.citation.date26/09/2022en_UK
dc.citation.isbn978-1-6654-2141-6en_UK
dc.publisher.addressPiscataway, NJ, USAen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.isiWOS:000892614100019en_UK
dc.identifier.scopusid2-s2.0-85141051441en_UK
dc.identifier.wtid1826549en_UK
dc.contributor.orcid0000-0003-1762-1578en_UK
dc.date.accepted2022-04-30en_UK
dcterms.dateAccepted2022-04-30en_UK
dc.date.filedepositdate2022-07-03en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionAMen_UK
local.rioxx.authorChowdhury, Ipshita Roy|en_UK
local.rioxx.authorBhowmik, Deepayan|0000-0003-1762-1578en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2022-07-05en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2022-07-05|en_UK
local.rioxx.filenameIEEE_DSC_2022_Ontology_final.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source978-1-6654-2141-6en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
IEEE_DSC_2022_Ontology_final.pdfFulltext - Accepted Version1.57 MBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.