Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/34051
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGong, Mengyien_UK
dc.contributor.authorO'Donnell, Ruthen_UK
dc.contributor.authorMiller, Claireen_UK
dc.contributor.authorScott, Marianen_UK
dc.contributor.authorSimis, Stefanen_UK
dc.contributor.authorGroom, Steveen_UK
dc.contributor.authorTyler, Andrewen_UK
dc.contributor.authorHunter, Peteren_UK
dc.contributor.authorSpyrakos, Evangelosen_UK
dc.contributor.authorMerchant, Christopheren_UK
dc.contributor.authorMaberly, Stephenen_UK
dc.contributor.authorCarvalho, Laurenceen_UK
dc.date.accessioned2022-03-11T01:00:48Z-
dc.date.available2022-03-11T01:00:48Z-
dc.date.issued2022-01-31en_UK
dc.identifier.urihttp://hdl.handle.net/1893/34051-
dc.description.abstractSatellite remote sensing data are important to the study of environment problems at a global scale. The GloboLakes project aimed to use satellite remote sensing data to investigate the response of the major lakes on Earth to environmental conditions and change. The main challenge to statistical modelling is the identification of the spatial structure in global lake ecological processes from a large number of time series subject to incomplete data and varying uncertainty. This paper introduces a comprehensive modelling procedure, combining adaptive smoothing and functional data analysis, to estimate the smooth curves representing the trend and seasonal patterns in the time series and to cluster the curves over space. Two approaches, based on an irregular basis and an adaptive penalty matrix, are developed to account for the varying uncertainty induced by missing observations and specific constraints (e.g. substantive periods of measurement values of zero in winter). In particular, the adaptive penalty matrix applies a heavier penalty to smooth curve estimates where there is higher uncertainty to prevent over-fitting the noisy/biased data. The modelling procedure was applied to the lake surface water temperature (LSWT) time series from 732 largest lakes globally and the lake chlorophyll-a time series from 535 largest lakes globally. The procedure enabled the identification of nine global lake thermal regions based on the temporal dynamics of LSWT, and the extraction of eight global lake clusters based on the interannual variation in chlorophyll-a and ten clusters to differentiate the seasonal signals.en_UK
dc.language.isoenen_UK
dc.publisherElsevieren_UK
dc.relationGong M, O'Donnell R, Miller C, Scott M, Simis S, Groom S, Tyler A, Hunter P, Spyrakos E, Merchant C, Maberly S & Carvalho L (2022) Adaptive smoothing to identify spatial structure in global lake ecological processes using satellite remote sensing data. Spatial Statistics. https://doi.org/10.1016/j.spasta.2022.100615en_UK
dc.rightsThis item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_UK
dc.subjectSatellite remote sensing dataen_UK
dc.subjectAdaptive smoothingen_UK
dc.subjectFunctional data analysisen_UK
dc.subjectSpatial structureen_UK
dc.titleAdaptive smoothing to identify spatial structure in global lake ecological processes using satellite remote sensing dataen_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate2023-02-01en_UK
dc.rights.embargoreason[Paper_Adaptive_smoothing90.pdf] Publisher requires embargo of 12 months after publication.en_UK
dc.identifier.doi10.1016/j.spasta.2022.100615en_UK
dc.citation.jtitleSpatial Statisticsen_UK
dc.citation.issn2211-6753en_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.contributor.funderNERC Natural Environment Research Councilen_UK
dc.author.emailevangelos.spyrakos@stir.ac.uken_UK
dc.citation.date31/01/2022en_UK
dc.description.notesOutput Status: Forthcoming/Available Onlineen_UK
dc.contributor.affiliationLancaster Universityen_UK
dc.contributor.affiliationUniversity of Glasgowen_UK
dc.contributor.affiliationUniversity of Glasgowen_UK
dc.contributor.affiliationUniversity of Glasgowen_UK
dc.contributor.affiliationPlymouth Marine Laboratoryen_UK
dc.contributor.affiliationPlymouth Marine Laboratoryen_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.contributor.affiliationUniversity of Readingen_UK
dc.contributor.affiliationCentre for Ecology & Hydrology (CEH)en_UK
dc.contributor.affiliationCentre for Ecology & Hydrology (CEH)en_UK
dc.identifier.scopusid2-s2.0-85124391698en_UK
dc.identifier.wtid1800976en_UK
dc.contributor.orcid0000-0003-0604-5827en_UK
dc.contributor.orcid0000-0001-7269-795Xen_UK
dc.date.accepted2022-01-19en_UK
dcterms.dateAccepted2022-01-19en_UK
dc.date.filedepositdate2022-03-10en_UK
dc.relation.funderprojectGlobal Observatory of Lake responses to Environmental change (Globolakes)en_UK
dc.relation.funderrefNE/J024279/1en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorGong, Mengyi|en_UK
local.rioxx.authorO'Donnell, Ruth|en_UK
local.rioxx.authorMiller, Claire|en_UK
local.rioxx.authorScott, Marian|en_UK
local.rioxx.authorSimis, Stefan|en_UK
local.rioxx.authorGroom, Steve|en_UK
local.rioxx.authorTyler, Andrew|0000-0003-0604-5827en_UK
local.rioxx.authorHunter, Peter|0000-0001-7269-795Xen_UK
local.rioxx.authorSpyrakos, Evangelos|en_UK
local.rioxx.authorMerchant, Christopher|en_UK
local.rioxx.authorMaberly, Stephen|en_UK
local.rioxx.authorCarvalho, Laurence|en_UK
local.rioxx.projectNE/J024279/1|Natural Environment Research Council|http://dx.doi.org/10.13039/501100000270en_UK
local.rioxx.freetoreaddate2023-02-01en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2023-01-31en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by-nc-nd/4.0/|2023-02-01|en_UK
local.rioxx.filenamePaper_Adaptive_smoothing90.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source2211-6753en_UK
Appears in Collections:Biological and Environmental Sciences Journal Articles

Files in This Item:
File Description SizeFormat 
Paper_Adaptive_smoothing90.pdfFulltext - Accepted Version1.2 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.