Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/34044
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMsusa, Anastazia Danielen_UK
dc.contributor.authorJiang, Dalinen_UK
dc.contributor.authorMatsushita, Bunkeien_UK
dc.date.accessioned2022-03-10T01:01:26Z-
dc.date.available2022-03-10T01:01:26Z-
dc.date.issued2022-02en_UK
dc.identifier.other868en_UK
dc.identifier.urihttp://hdl.handle.net/1893/34044-
dc.description.abstractWater transparency (or Secchi disk depth: ZSD) is a key parameter of water quality; thus, it is very important to routinely monitor. In this study, we made four efforts to improve a state-of-the-art ZSD estimation algorithm that was developed in 2019 on the basis of a new underwater visibility theory proposed in 2015. The four efforts were: (1) classifying all water into clear (Type I), moderately turbid (Type II), highly turbid (Type III), or extremely turbid (Type IV) water types; (2) selecting different reference wavelengths and corresponding semianalytical models for each water type; (3) employing an estimation model to represent reasonable shapes for particulate backscattering coefficients based on the water type classification; and (4) constraining likely wavelength range at which the minimum diffuse attenuation coefficient (Kd(λ)) will occur for each water type. The performance of the proposed ZSD estimation algorithm was compared to that of the original state-of-the-art algorithm using a simulated dataset (N = 91,287, ZSD values 0.01 to 44.68 m) and an in situ measured dataset (N = 305, ZSD values 0.3 to 16.4 m). The results showed a significant improvement with a reduced mean absolute percentage error (MAPE) from 116% to 65% for simulated data and from 32% to 27% for in situ data. Outliers in the previous algorithm were well addressed in the new algorithm. We further evaluated the developed ZSD estimation algorithm using medium resolution imaging spectrometer (MERIS) images acquired from Lake Kasumigaura, Japan. The results obtained from 19 matchups revealed that the estimated ZSD matched well with the in situ measured ZSD, with a MAPE of 15%. The developed ZSD estimation algorithm can probably be applied to different optical water types due to its semianalytical features.en_UK
dc.language.isoenen_UK
dc.publisherMDPIen_UK
dc.relationMsusa AD, Jiang D & Matsushita B (2022) A Semianalytical Algorithm for Estimating Water Transparency in Different Optical Water Types from MERIS Data. Remote Sensing, 14 (4), Art. No.: 868. https://doi.org/10.3390/rs14040868en_UK
dc.rights© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectsecchi disk depthen_UK
dc.subjectwater qualityen_UK
dc.subjectwater type classificationen_UK
dc.subjectsemianalytical modelsen_UK
dc.subjectMERISen_UK
dc.titleA Semianalytical Algorithm for Estimating Water Transparency in Different Optical Water Types from MERIS Dataen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.3390/rs14040868en_UK
dc.citation.jtitleRemote Sensingen_UK
dc.citation.issn2072-4292en_UK
dc.citation.volume14en_UK
dc.citation.issue4en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.citation.date11/02/2022en_UK
dc.contributor.affiliationUniversity of Tsukubaen_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.contributor.affiliationUniversity of Tsukubaen_UK
dc.identifier.isiWOS:000765304900001en_UK
dc.identifier.scopusid2-s2.0-85124689493en_UK
dc.identifier.wtid1801045en_UK
dc.date.accepted2022-02-08en_UK
dcterms.dateAccepted2022-02-08en_UK
dc.date.filedepositdate2022-03-09en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorMsusa, Anastazia Daniel|en_UK
local.rioxx.authorJiang, Dalin|en_UK
local.rioxx.authorMatsushita, Bunkei|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2022-03-09en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2022-03-09|en_UK
local.rioxx.filenameremotesensing-14-00868-v2.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source2072-4292en_UK
Appears in Collections:Biological and Environmental Sciences Journal Articles

Files in This Item:
File Description SizeFormat 
remotesensing-14-00868-v2.pdfFulltext - Published Version3.45 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.