Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/33997
Full metadata record
DC FieldValueLanguage
dc.contributor.authorElmetwalli, Adel Hen_UK
dc.contributor.authorMazrou, Yasser S Aen_UK
dc.contributor.authorTyler, Andrew Nen_UK
dc.contributor.authorHunter, Peter Den_UK
dc.contributor.authorElsherbiny, Osamaen_UK
dc.contributor.authorYaseen, Zaher Mundheren_UK
dc.contributor.authorElsayed, Salahen_UK
dc.date.accessioned2022-03-04T01:05:07Z-
dc.date.available2022-03-04T01:05:07Z-
dc.date.issued2022-03en_UK
dc.identifier.other332en_UK
dc.identifier.urihttp://hdl.handle.net/1893/33997-
dc.description.abstractMonitoring strategic agricultural crops in terms of crop growth performance, by accurate cost-effective and quick tools is crucially important in site-specific management to avoid crop reductions. The availability of commercial high resolution satellite images with high resolution (spatial and spectral) as well as in situ spectra measurements can help decision takers to have deep insight on crop stress in a certain region. The research attempts to examine remote sensing dataset for forecasting wheat crop (Sakha 61) characteristics including the leaf area index (LAI), plant height (plant-h), above ground biomass (AGB) and Soil Plant Analysis Development (SPAD) value of wheat across non-stress, drought and salinity-induced stress in the Nile Delta region. In this context, the ability of in situ spectroradiometry measurements and QuickBird high resolution images was evaluated in our research. The efficiency of Random Forest (RF) and Artificial Neural Network (ANN), mathematical models was assessed to estimate the four measured wheat characteristics based on vegetation spectral reflectance indices (V-SRIs) extracted from both approaches and their interactions. Field surveys were carried out to collect in situ spectroradiometry measurements concomitant with the acquisition of QuickBird imagery. The results demonstrated that several V-SRIs extracted from in situ spectroradiometry data and the QuickBird image correlated with the LAI, plant-h, AGB, and SPAD value of wheat crop across the study site. The determination coefficient (R2) values of the association between V-SRIs of in situ spectroradiometry data and various determined wheat characteristics varied from 0.26 to 0.85. The ANN-GSIs-3 was found to be the optimum predictive model, demonstrating a greater relationship between the advanced features and LAI. The three features of V-SRIs comprised in this model were strongly significant for the prediction of LAI. The attained results indicated high R2 values of 0.94 and 0.86 for the training and validation phases. The ANN-GSIs-3 model constructed for the determination of chlorophyll in the plant which had higher performance expectations (R2 = 0.96 and 0.92 for training and validation datasets, respectively). In conclusion, the results of our study revealed that high resolution remote sensing images such as QuickBird or similar imagery, and in situ spectroradiometry measurements have the feasibility of providing necessary crop monitoring data across non-stressed and stressed (drought and salinity) conditions when integrating V-SRIs with ANN and RF algorithms.en_UK
dc.language.isoenen_UK
dc.publisherMDPI AGen_UK
dc.relationElmetwalli AH, Mazrou YSA, Tyler AN, Hunter PD, Elsherbiny O, Yaseen ZM & Elsayed S (2022) Assessing the Efficiency of Remote Sensing and Machine Learning Algorithms to Quantify Wheat Characteristics in the Nile Delta Region of Egypt. Agriculture, 12 (3), Art. No.: 332. https://doi.org/10.3390/agriculture12030332en_UK
dc.rights© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectartificial neural networken_UK
dc.subjectQuickBirden_UK
dc.subjectrandom foresten_UK
dc.subjectsatellite imagesen_UK
dc.subjectsalinityen_UK
dc.subjectspectral indicesen_UK
dc.subjectstressen_UK
dc.subjectwheaten_UK
dc.titleAssessing the Efficiency of Remote Sensing and Machine Learning Algorithms to Quantify Wheat Characteristics in the Nile Delta Region of Egypten_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.3390/agriculture12030332en_UK
dc.citation.jtitleAgricultureen_UK
dc.citation.issn2077-0472en_UK
dc.citation.issn2077-0472en_UK
dc.citation.volume12en_UK
dc.citation.issue3en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.citation.date25/02/2022en_UK
dc.contributor.affiliationUniversity of Tantaen_UK
dc.contributor.affiliationKing Khalid Universityen_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.contributor.affiliationMansoura Universityen_UK
dc.contributor.affiliationUniversity of Southern Queenslanden_UK
dc.contributor.affiliationUniversity of Sadat Cityen_UK
dc.identifier.isiWOS:000775573700001en_UK
dc.identifier.scopusid2-s2.0-85125752408en_UK
dc.identifier.wtid1799717en_UK
dc.contributor.orcid0000-0003-0604-5827en_UK
dc.contributor.orcid0000-0001-7269-795Xen_UK
dc.contributor.orcid0000-0003-3031-7108en_UK
dc.contributor.orcid0000-0002-5808-3561en_UK
dc.date.accepted2022-02-22en_UK
dcterms.dateAccepted2022-02-22en_UK
dc.date.filedepositdate2022-03-03en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorElmetwalli, Adel H|en_UK
local.rioxx.authorMazrou, Yasser S A|en_UK
local.rioxx.authorTyler, Andrew N|0000-0003-0604-5827en_UK
local.rioxx.authorHunter, Peter D|0000-0001-7269-795Xen_UK
local.rioxx.authorElsherbiny, Osama|0000-0003-3031-7108en_UK
local.rioxx.authorYaseen, Zaher Mundher|en_UK
local.rioxx.authorElsayed, Salah|0000-0002-5808-3561en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2022-03-03en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2022-03-03|en_UK
local.rioxx.filenameagriculture-12-00332.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source2077-0472en_UK
Appears in Collections:Biological and Environmental Sciences Journal Articles

Files in This Item:
File Description SizeFormat 
agriculture-12-00332.pdfFulltext - Published Version3.52 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.