Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/33923
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDuncanson, Lauraen_UK
dc.contributor.authorKellner, James Ren_UK
dc.contributor.authorArmston, Johnen_UK
dc.contributor.authorDubayah, Ralphen_UK
dc.contributor.authorMinor, David Men_UK
dc.contributor.authorHancock, Stevenen_UK
dc.contributor.authorHealey, Sean Pen_UK
dc.contributor.authorPatterson, Paul Len_UK
dc.contributor.authorSaarela, Svetlanaen_UK
dc.contributor.authorMarselis, Suzanneen_UK
dc.contributor.authorSilva, Carlos Een_UK
dc.contributor.authorBruening, Jamisen_UK
dc.contributor.authorAbernethy, Katharineen_UK
dc.contributor.authorJeffery, Kathryn Jen_UK
dc.contributor.authorWhite, Lee J Ten_UK
dc.date.accessioned2022-02-04T01:01:48Z-
dc.date.available2022-02-04T01:01:48Z-
dc.date.issued2022-03-01en_UK
dc.identifier.other112845en_UK
dc.identifier.urihttp://hdl.handle.net/1893/33923-
dc.description.abstractNASA’s Global Ecosystem Dynamics Investigation (GEDI) is collecting spaceborne full waveform lidar data with a primary science goal of producing accurate estimates of forest aboveground biomass density (AGBD). This paper presents the development of the models used to create GEDI’s footprint-level (~25 m) AGBD (GEDI04_A) product, including a description of the datasets used and the procedure for final model selection. The data used to fit our models are from a compilation of globally distributed spatially and temporally coincident field and airborne lidar datasets, whereby we simulated GEDI-like waveforms from airborne lidar to build a calibration database. We used this database to expand the geographic extent of past waveform lidar studies, and divided the globe into four broad strata by Plant Functional Type (PFT) and six geographic regions. GEDI’s waveform-to-biomass models take the form of parametric Ordinary Least Squares (OLS) models with simulated Relative Height (RH) metrics as predictor variables. From an exhaustive set of candidate models, we selected the best input predictor variables, and data transformations for each geographic stratum in the GEDI domain to produce a set of comprehensive predictive footprint-level models. We found that model selection frequently favored combinations of RH metrics at the 98th, 90th, 50th, and 10th height above ground-level percentiles (RH98, RH90, RH50, and RH10, respectively), but that inclusion of lower RH metrics (e.g. RH10) did not markedly improve model performance. Second, forced inclusion of RH98 in all models was important and did not degrade model performance, and the best performing models were parsimonious, typically having only 1-3 predictors. Third, stratification by geographic domain (PFT, geographic region) improved model performance in comparison to global models without stratification. Fourth, for the vast majority of strata, the best performing models were fit using square root transformation of field AGBD and/or height metrics. There was considerable variability in model performance across geographic strata, and areas with sparse training data and/or high AGBD values had the poorest performance. These models are used to produce global predictions of AGBD, but will be improved in the future as more and better training data become available.en_UK
dc.language.isoenen_UK
dc.publisherElsevieren_UK
dc.relationDuncanson L, Kellner JR, Armston J, Dubayah R, Minor DM, Hancock S, Healey SP, Patterson PL, Saarela S, Marselis S, Silva CE, Bruening J, Abernethy K, Jeffery KJ & White LJT (2022) Aboveground biomass density models for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar mission. Remote Sensing of Environment, 270, Art. No.: 112845. https://doi.org/10.1016/j.rse.2021.112845en_UK
dc.rightsThis is an open access article distributed under the terms of the Creative Commons CC-BY license (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. You are not required to obtain permission to reuse this article.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectLiDARen_UK
dc.subjectGEDIen_UK
dc.subjectWaveformen_UK
dc.subjectForesten_UK
dc.subjectAboveground biomassen_UK
dc.subjectModelingen_UK
dc.titleAboveground biomass density models for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar missionen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1016/j.rse.2021.112845en_UK
dc.citation.jtitleRemote Sensing of Environmenten_UK
dc.citation.issn0034-4257en_UK
dc.citation.volume270en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.citation.date07/01/2022en_UK
dc.description.notesAdditional co-authors: Scott J. Goetz, Hao Tang, Michelle Hofton, Bryan Blair, Scott Luthcke, Lola Fatoyinbo, Alfonso Alonso, Hans-Erik Andersen, Paul Aplin, Timothy R. Baker, Nicolas Barbier, Jean Francois Bastin, Peter Biber, Pascal Boeckx, Jan Bogaert, Luigi Boschetti, Peter Brehm Boucher, Doreen S. Boyd, David F.R.P. Burslem, Sofia Calvo-Rodriguez, Jérôme Chave, Robin L. Chazdon, David B. Clark, Deborah A. Clark, Warren B. Cohen, David A. Coomes, Piermaria Corona, K.C. Cushman, Mark E.J. Cutler, James W. Dalling, Michele Dalponte, Jonathan Dash, Sergio de-Miguel, Songqiu Deng, Peter Woods Ellis, Barend Erasmus, Patrick A.Fekety, Alfredo Fernandez-Landa, Antonio Ferraz, Rico Fischer, Adrian G. Fisher, Antonio García-Abril, Terje Gobakken, Jorg M. Hacker, Marco Heurich, Ross A. Hill, Chris Hopkinson, Huabing Huang, Stephen P. Hubbell, Andrew T. Hudak, Andreas Huth, Benedikt Imbach, Masato Katoh, Elizabeth Kearsley, David Kenfack, Natascha Kljun, Nikolai Knapp, Kamil Král, Martin Krůček, Nicolas Labrière, Simon L. Lewis, Marcos Longo, Richard M. Lucas, Russell Main, Jose A. Manzanera, Rodolfo Vásquez Martínez, Renaud Mathieu, Herve Memiaghe, Victoria Meyer, Abel Monteagudo Mendoza, Alessandra Monerris, Paul Montesano, Felix Morsdorf, Erik Næsset, Laven Naidoo, Reuben Nilus, Michael O’Brien, David A. Orwig, Konstantinos Papathanassiou, Geoffrey Parker, Christopher Philipson, Oliver L. Phillips, Jan Pisek, John R. Poulsen, Hans Pretzsch, Christoph Rüdiger, Sassan Saatchi, Arturo Sanchez-Azofeifa, Nuria Sanchez-Lopez, Robert Scholes, Carlos A. Silva, Marc Simard, Andrew Skidmore, Krzysztof Stereńczak, Mihai Tanase, Chiara Torresan, Ruben Valbuena, Hans Verbeeck, Tomas Vrska, Konrad Wessels, Joanne C. White, Eliakimu Zahabu, Carlo Zgraggenen_UK
dc.contributor.affiliationUniversity of Marylanden_UK
dc.contributor.affiliationBrown Universityen_UK
dc.contributor.affiliationUniversity of Marylanden_UK
dc.contributor.affiliationUniversity of Marylanden_UK
dc.contributor.affiliationUniversity of Marylanden_UK
dc.contributor.affiliationUniversity of Edinburghen_UK
dc.contributor.affiliationUS Forest Serviceen_UK
dc.contributor.affiliationUS Forest Serviceen_UK
dc.contributor.affiliationSwedish University of Agricultural Sciencesen_UK
dc.contributor.affiliationUniversity of Marylanden_UK
dc.contributor.affiliationUniversity of Marylanden_UK
dc.contributor.affiliationUniversity of Marylanden_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.contributor.affiliationMinistry of Forestry, Economy, Waters, Fisheries and National Parksen_UK
dc.identifier.isiWOS:000760433300002en_UK
dc.identifier.scopusid2-s2.0-85123289336en_UK
dc.identifier.wtid1791756en_UK
dc.contributor.orcid0000-0002-0393-9342en_UK
dc.contributor.orcid0000-0002-2632-0008en_UK
dc.date.accepted2021-12-04en_UK
dcterms.dateAccepted2021-12-04en_UK
dc.date.filedepositdate2022-02-03en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorDuncanson, Laura|en_UK
local.rioxx.authorKellner, James R|en_UK
local.rioxx.authorArmston, John|en_UK
local.rioxx.authorDubayah, Ralph|en_UK
local.rioxx.authorMinor, David M|en_UK
local.rioxx.authorHancock, Steven|en_UK
local.rioxx.authorHealey, Sean P|en_UK
local.rioxx.authorPatterson, Paul L|en_UK
local.rioxx.authorSaarela, Svetlana|en_UK
local.rioxx.authorMarselis, Suzanne|en_UK
local.rioxx.authorSilva, Carlos E|en_UK
local.rioxx.authorBruening, Jamis|en_UK
local.rioxx.authorAbernethy, Katharine|0000-0002-0393-9342en_UK
local.rioxx.authorJeffery, Kathryn J|0000-0002-2632-0008en_UK
local.rioxx.authorWhite, Lee J T|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2022-02-03en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2022-02-03|en_UK
local.rioxx.filename1-s2.0-S0034425721005654-main.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source0034-4257en_UK
Appears in Collections:Biological and Environmental Sciences Journal Articles

Files in This Item:
File Description SizeFormat 
1-s2.0-S0034425721005654-main.pdfFulltext - Published Version3.71 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.