Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/33853
Full metadata record
DC FieldValueLanguage
dc.contributor.authorShao, Weizengen_UK
dc.contributor.authorJiang, Xingweien_UK
dc.contributor.authorSun, Zhanfengen_UK
dc.contributor.authorHu, Yuyien_UK
dc.contributor.authorMarino, Armandoen_UK
dc.contributor.authorZhang, Youguangen_UK
dc.date.accessioned2022-01-21T01:01:01Z-
dc.date.available2022-01-21T01:01:01Z-
dc.date.issued2022en_UK
dc.identifier.urihttp://hdl.handle.net/1893/33853-
dc.description.abstractThe goal of this study was to investigate the performance of a spectral-transformation wave retrieval algorithm and confirm the accuracy of wave retrieval from C-band Chinese Gaofen-3 (GF-3) Synthetic Aperture Radar (SAR) images. More than 200 GF-3 SAR images of the coastal China Sea and the Japan Sea for dates from January to July 2020 were acquired in the Quad-Polarization Strip (QPS) mode. The images had a swath of 30 km and a spatial resolution of 8 m pixel size. They were processed to retrieve Significant Wave Height (SWH), which is simulated from a numerical wave model called Simulating WAves Nearshore (SWAN). The first-guess spectrum is essential to the accuracy of Synthetic Aperture Radar (SAR) wave spectrum retrieval. Therefore, we proposed a wave retrieval scheme combining the theocratic-based Max Planck Institute Algorithm (MPI), a Semi-Parametric Retrieval Algorithm (SPRA), and the Parameterized First-guess Spectrum Method (PFSM), in which a full wave-number spectrum and a non-empirical ocean spectrum proposed by Elfouhaily are applied. The PFSM can be driven using the wind speed without calculating the dominant wave phase speed. Wind speeds were retrieved using a Vertical-Vertical (VV) polarized geophysical model function C-SARMOD2. The proposed algorithm was implemented for all collected SAR images. A comparison of SAR-derived wind speeds with European Center for Medium-Range Weather Forecasts (ECMWF) ERA-5 data showed a 1.95 m/s Root-Mean-Squared Error (RMSE). The comparison of retrieved SWH with SWAN-simulated results demonstrated a 0.47 m RMSE, which is less than the 0.68 m RMSE of SWH when using the PFSM algorithm.en_UK
dc.language.isoenen_UK
dc.publisherTaylor & Francisen_UK
dc.relationShao W, Jiang X, Sun Z, Hu Y, Marino A & Zhang Y (2022) Evaluation of wave retrieval for Chinese Gaofen-3 synthetic aperture radar. Geo-Spatial Information Science, 25 (2), pp. 229-243. https://doi.org/10.1080/10095020.2021.2012531en_UK
dc.rights© 2022 Wuhan University. Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectWave retrievalen_UK
dc.subjectGaofen-3 (GF-3)en_UK
dc.subjectSynthetic Aperture Radar (SAR)en_UK
dc.titleEvaluation of wave retrieval for Chinese Gaofen-3 synthetic aperture radaren_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1080/10095020.2021.2012531en_UK
dc.citation.jtitleGeo-Spatial Information Scienceen_UK
dc.citation.issn1993-5153en_UK
dc.citation.issn1009-5020en_UK
dc.citation.volume25en_UK
dc.citation.issue2en_UK
dc.citation.spage229en_UK
dc.citation.epage243en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.citation.date07/01/2022en_UK
dc.contributor.affiliationShanghai Ocean Universityen_UK
dc.contributor.affiliationNational Satellite Ocean Application Service (NSOAS)en_UK
dc.contributor.affiliationShanghai Ocean Universityen_UK
dc.contributor.affiliationShanghai Ocean Universityen_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.contributor.affiliationNational Satellite Ocean Application Service (NSOAS)en_UK
dc.identifier.isiWOS:000740082000001en_UK
dc.identifier.scopusid2-s2.0-85122477504en_UK
dc.identifier.wtid1788675en_UK
dc.contributor.orcid0000-0002-4531-3102en_UK
dc.date.accepted2021-11-25en_UK
dcterms.dateAccepted2021-11-25en_UK
dc.date.filedepositdate2022-01-20en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorShao, Weizeng|en_UK
local.rioxx.authorJiang, Xingwei|en_UK
local.rioxx.authorSun, Zhanfeng|en_UK
local.rioxx.authorHu, Yuyi|en_UK
local.rioxx.authorMarino, Armando|0000-0002-4531-3102en_UK
local.rioxx.authorZhang, Youguang|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2022-01-20en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2022-01-20|en_UK
local.rioxx.filename10095020.2021.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1993-5153en_UK
Appears in Collections:Biological and Environmental Sciences Journal Articles

Files in This Item:
File Description SizeFormat 
10095020.2021.pdfFulltext - Published Version10 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.