Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/33761
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chicano, Francisco | en_UK |
dc.contributor.author | Ochoa, Gabriela | en_UK |
dc.contributor.author | Whitley, L Darrell | en_UK |
dc.contributor.author | Tinós, Renato | en_UK |
dc.date.accessioned | 2021-12-17T01:19:58Z | - |
dc.date.available | 2021-12-17T01:19:58Z | - |
dc.date.issued | 2021-12-13 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/33761 | - |
dc.description.abstract | An optimal recombination operator for two parent solutions provides the best solution among those that take the value for each variable from one of the parents (gene transmission property). If the solutions are bit strings, the offspring of an optimal recombination operator is optimal in the smallest hyperplane containing the two parent solutions. Exploring this hyperplane is computationally costly, in general, requiring exponential time in the worst case. However, when the variable interaction graph of the objective function is sparse, exploration can be done in polynomial time. In this paper, we present a recombination operator, called Dynastic Potential Crossover (DPX), that runs in polynomial time and behaves like an optimal recombination operator for low-epistasis combinatorial problems. We compare this operator, both theoretically and experimentally, with traditional crossover operators, like uniform crossover and network crossover, and with two recently defined efficient recombination operators: partition crossover and articulation points partition crossover. The empirical comparison uses NKQ Landscapes and MAX-SAT instances. DPX outperforms the other crossover operators in terms of quality of the offspring and provides better results included in a trajectory and a population-based metaheuristic, but it requires more time and memory to compute the offspring. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | Massachusetts Institute of Technology Press (MIT Press) | en_UK |
dc.relation | Chicano F, Ochoa G, Whitley LD & Tinós R (2021) Dynastic Potential Crossover Operator. Evolutionary Computation. https://doi.org/10.1162/evco_a_00305 | en_UK |
dc.rights | This is the author's final version accepted for publication in Evolutionary Computation published by MIT Press: https://doi.org/10.1162/evco_a_00305 | en_UK |
dc.rights.uri | https://storre.stir.ac.uk/STORREEndUserLicence.pdf | en_UK |
dc.subject | Recombination operator | en_UK |
dc.subject | dynastic potential | en_UK |
dc.subject | gray box optimization | en_UK |
dc.title | Dynastic Potential Crossover Operator | en_UK |
dc.type | Journal Article | en_UK |
dc.identifier.doi | 10.1162/evco_a_00305 | en_UK |
dc.identifier.pmid | 34902015 | en_UK |
dc.citation.jtitle | Evolutionary Computation | en_UK |
dc.citation.issn | 1530-9304 | en_UK |
dc.citation.issn | 1063-6560 | en_UK |
dc.citation.peerreviewed | Refereed | en_UK |
dc.type.status | AM - Accepted Manuscript | en_UK |
dc.contributor.funder | European Commission (Horizon 2020) | en_UK |
dc.citation.date | 13/12/2021 | en_UK |
dc.description.notes | Output Status: Forthcoming/Available Online | en_UK |
dc.contributor.affiliation | University of Malaga | en_UK |
dc.contributor.affiliation | Computing Science | en_UK |
dc.contributor.affiliation | Colorado State University | en_UK |
dc.contributor.affiliation | University of Sao Paulo | en_UK |
dc.identifier.wtid | 1781610 | en_UK |
dc.contributor.orcid | 0000-0001-7649-5669 | en_UK |
dc.date.accepted | 2021-11-29 | en_UK |
dcterms.dateAccepted | 2021-11-29 | en_UK |
dc.date.filedepositdate | 2021-12-16 | en_UK |
rioxxterms.apc | not required | en_UK |
rioxxterms.type | Journal Article/Review | en_UK |
rioxxterms.version | AM | en_UK |
local.rioxx.author | Chicano, Francisco| | en_UK |
local.rioxx.author | Ochoa, Gabriela|0000-0001-7649-5669 | en_UK |
local.rioxx.author | Whitley, L Darrell| | en_UK |
local.rioxx.author | Tinós, Renato| | en_UK |
local.rioxx.project | Project ID unknown|European Commission (Horizon 2020)| | en_UK |
local.rioxx.freetoreaddate | 2021-12-16 | en_UK |
local.rioxx.licence | https://storre.stir.ac.uk/STORREEndUserLicence.pdf|2021-12-16| | en_UK |
local.rioxx.filename | Dynastic_Potential_Crossover_ECJ.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 1530-9304 | en_UK |
Appears in Collections: | Computing Science and Mathematics Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Dynastic_Potential_Crossover_ECJ.pdf | Fulltext - Accepted Version | 922.69 kB | Adobe PDF | View/Open |
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.