Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/33732
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSilva, Cristianen_UK
dc.contributor.authorMarino, Armandoen_UK
dc.contributor.authorLopez-Sanchez, Juan Men_UK
dc.contributor.authorCameron, Iainen_UK
dc.date.accessioned2021-12-10T01:01:27Z-
dc.date.available2021-12-10T01:01:27Z-
dc.date.issued2021en_UK
dc.identifier.urihttp://hdl.handle.net/1893/33732-
dc.description.abstractThe interpretation of multidimensional Synthetic Aperture Radar (SAR) data often requires expert knowledge. In fact, it requires to simultaneously consider several time series of polarimetric features to understand the physical changes of a target and its temporal evolution. To characterise the changes over time, Multitemporal Polarimetric SAR (MTPolSAR) change detection has been introduced in the literature in [1] and [2]. However, previous methods either only exploit intensity of changes or the resulting changed scattering mechanisms are not guaranteed to represent physical changes of the target. This paper presents a variation in the change detector used in [2] based on the difference of covariance matrices that characterise the polarimetric information, allowing for an intuitive representation and characterisation of physical changes of a target and its dynamics. We show the results of this method for monitoring growth stages of rice crops and present a novel application of the method for crop type mapping from MT-PolSAR data. We compare its performance with a neural network-based classifier that uses time series of PolSAR features derived from a target covariance matrix decomposition as input. Experimental results show that the classification performance of the proposed method and the baseline are comparable, with differences between the two methods in the overall balanced accuracy and the F1-macro metrics of around 2% and 3%, respectively. The method presented here achieves similar classification performances of a traditional PolSAR data classifier while providing additional advantages in terms of interpretability and insights about the physical changes of a target over time.en_UK
dc.language.isoenen_UK
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_UK
dc.relationSilva C, Marino A, Lopez-Sanchez JM & Cameron I (2021) Multitemporal Polarimetric SAR Change Detection for Crop Monitoring and Crop Type Classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, pp. 12361-12374. https://doi.org/10.1109/jstars.2021.3130186en_UK
dc.rightsThis work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectAtmospheric Scienceen_UK
dc.subjectComputers in Earth Sciencesen_UK
dc.titleMultitemporal Polarimetric SAR Change Detection for Crop Monitoring and Crop Type Classificationen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1109/jstars.2021.3130186en_UK
dc.citation.jtitleIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensingen_UK
dc.citation.issn2151-1535en_UK
dc.citation.issn1939-1404en_UK
dc.citation.volume14en_UK
dc.citation.spage12361en_UK
dc.citation.epage12374en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderUK Space Agencyen_UK
dc.contributor.funderMinisterio de Ciencia e Innovacinen_UK
dc.citation.date23/11/2021en_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.contributor.affiliationUniversity of Alicanteen_UK
dc.contributor.affiliationEnvironment Systems LTDen_UK
dc.identifier.isiWOS:000730417100007en_UK
dc.identifier.scopusid2-s2.0-85120045885en_UK
dc.identifier.wtid1776031en_UK
dc.contributor.orcid0000-0002-6843-5022en_UK
dc.contributor.orcid0000-0002-4531-3102en_UK
dc.date.accepted2021-11-13en_UK
dcterms.dateAccepted2021-11-13en_UK
dc.date.filedepositdate2021-12-09en_UK
rioxxterms.apcpaiden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorSilva, Cristian|0000-0002-6843-5022en_UK
local.rioxx.authorMarino, Armando|0000-0002-4531-3102en_UK
local.rioxx.authorLopez-Sanchez, Juan M|en_UK
local.rioxx.authorCameron, Iain|en_UK
local.rioxx.projectProject ID unknown|UK Space Agency|http://dx.doi.org/10.13039/100011690en_UK
local.rioxx.freetoreaddate2021-12-09en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2021-12-09|en_UK
local.rioxx.filenameSilva-Perez-etal-IEEEJSTAEORS-2021.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source2151-1535en_UK
Appears in Collections:Biological and Environmental Sciences Journal Articles

Files in This Item:
File Description SizeFormat 
Silva-Perez-etal-IEEEJSTAEORS-2021.pdfFulltext - Published Version9.17 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.