Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/33593
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAkbari, Vahiden_UK
dc.contributor.authorSolberg, Sveinen_UK
dc.contributor.authorPuliti, Stefanoen_UK
dc.date.accessioned2021-11-09T01:07:30Z-
dc.date.available2021-11-09T01:07:30Z-
dc.date.issued2021en_UK
dc.identifier.urihttp://hdl.handle.net/1893/33593-
dc.description.abstractThere is a need for mapping of forest areas with young stands under regeneration in Norway, as a basis for conducting tending, or precommercial thinning (PCT), whenever necessary. The main objective of this article is to show the potential of multitemporal Sentinel-1 (S-1) and Sentinel-2 (S-2) data for characterization and detection of forest stands under regeneration. We identify the most powerful radar and optical features for discrimination of forest stands under regeneration versus other forest stands. A number of optical and radar features derived from multitemporal S-1 and S-2 data were used for the class separability and cross-correlation analysis. The analysis was performed on forest resource maps consisting of the forest development classes and age in two study sites from south-eastern Norway. Important features were used to train the classical random forest (RF) classification algorithm. A comparative study of performance of the algorithm was used in three cases: I) using only S-1 features, II) using only S-2 optical bands, and III) using combination of S-1 and S-2 features. RF classification results pointed to increased class discrimination when using S-1 and S-2 data in relation to S-1 or S-2 data only. The study shows that forest stands under regeneration in the height interval for PCT can be detected with a detection rate of 91% and F-1 score of 73.2% in case III as most accurate, while tree density and broadleaf fraction could be estimated with coefficient of determination (R 2 ) of about 0.70 and 0.80, respectively.en_UK
dc.language.isoenen_UK
dc.publisherInstitute of Electrical and Electronics Engineersen_UK
dc.relationAkbari V, Solberg S & Puliti S (2021) Multitemporal Sentinel-1 and Sentinel-2 Images for Characterization and Discrimination of Young Forest Stands Under Regeneration in Norway. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, pp. 5049-5063. https://doi.org/10.1109/JSTARS.2021.3073101en_UK
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/en_UK
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_UK
dc.subjectForestryen_UK
dc.subjectVegetationen_UK
dc.subjectSynthetic aperture radaren_UK
dc.subjectBackscatteren_UK
dc.subjectCoherenceen_UK
dc.subjectRemote sensingen_UK
dc.subjectOptical sensorsen_UK
dc.titleMultitemporal Sentinel-1 and Sentinel-2 Images for Characterization and Discrimination of Young Forest Stands Under Regeneration in Norwayen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1109/JSTARS.2021.3073101en_UK
dc.citation.jtitleIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensingen_UK
dc.citation.issn2151-1535en_UK
dc.citation.issn1939-1404en_UK
dc.citation.volume14en_UK
dc.citation.spage5049en_UK
dc.citation.epage5063en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.citation.date16/04/2021en_UK
dc.contributor.affiliationNorwegian Institute of Bioeconomy Researchen_UK
dc.contributor.affiliationNorwegian Institute of Bioeconomy Researchen_UK
dc.contributor.affiliationNorwegian Institute of Bioeconomy Researchen_UK
dc.identifier.scopusid2-s2.0-85104609210en_UK
dc.identifier.wtid1766003en_UK
dc.contributor.orcid0000-0002-9621-8180en_UK
dc.date.accepted2021-04-11en_UK
dcterms.dateAccepted2021-04-11en_UK
dc.date.filedepositdate2021-11-08en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorAkbari, Vahid|0000-0002-9621-8180en_UK
local.rioxx.authorSolberg, Svein|en_UK
local.rioxx.authorPuliti, Stefano|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2021-11-08en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by-nc-nd/4.0/|2021-11-08|en_UK
local.rioxx.filenameAkbari-etal-IEEEJSTAEORS-2021.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source2151-1535en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
Akbari-etal-IEEEJSTAEORS-2021.pdfFulltext - Published Version10.15 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.