Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/33543
Appears in Collections:Senior Management Team Journal Articles
Peer Review Status: Refereed
Title: Phenoloxidase activity and organic carbon dynamics in historic Anthrosols in Scotland, UK
Author(s): Esiana, Benneth O I
Coates, Christopher J
Adderley, W Paul
Berns, Anne E
Bol, Roland
Issue Date: 2021
Date Deposited: 1-Nov-2021
Citation: Esiana BOI, Coates CJ, Adderley WP, Berns AE & Bol R (2021) Phenoloxidase activity and organic carbon dynamics in historic Anthrosols in Scotland, UK. PLoS ONE, 16 (10), Art. No.: e0259205. https://doi.org/10.1371/journal.pone.0259205
Abstract: Phenolic compounds are chemical precursor building blocks of soil organic matter. Their occurrence can be inhibitory to certain enzymes present in soil, thereby influencing the rate of decomposition of soil organic matter. Microbe-derived phenoloxidases (laccases) are extracellular enzymes capable of degrading recalcitrant polyphenolic compounds. In this study, our aim was to investigate the relationships between phenoloxidase enzyme activity, organic carbon content and microbial abundance in the context of long-term anthropogenically amended soils. To achieve this, we used a series of complementary biochemical analytical methods including gas chromatography, enzyme assays and solid-state Carbon-13 Cross Polarisation Magic-Angle Spinning Nuclear Magnetic Resonance Spectroscopy (13C CPMAS NMR). Using several anthrosols found in St Andrews (Scotland, UK) that had been subjected to intense anthropogenic modification since the medieval period (11th century AD) to present-day, we were able to scope the impact of past waste disposal on soils. The long-term anthropogenic impact led to organic matter-rich soils. Overall, phenoloxidase activity increased by up to 2-fold with soil depth (up to 100 cm) and was inversely correlated with microbial biomass. Solid-state 13C NMR characterisation of carbon species revealed that the observed decline in soil organic matter with depth corresponded to decreases in the labile organic carbon fractions as evidenced by changes in the O/N-alkyl C region of the spectra. The increase in phenoloxidase activity with depth would appear to be a compensatory mechanism for the reduced quantities of organic carbon and lower overall nutrient environment in subsoils. By enzymatically targeting phenolic compounds, microbes can better utilise recalcitrant carbon when other labile soil carbon sources become limited, thereby maintaining metabolic processes.
DOI Link: 10.1371/journal.pone.0259205
Rights: © 2021 Esiana et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Licence URL(s): http://creativecommons.org/licenses/by/4.0/

Files in This Item:
File Description SizeFormat 
journal.pone.0259205.pdfFulltext - Published Version2.01 MBAdobe PDFView/Open



This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.