Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/33523
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBhowmik, Deepayanen_UK
dc.contributor.authorElawady, Mohameden_UK
dc.contributor.authorNogueira, Keilleren_UK
dc.date.accessioned2021-10-28T00:03:36Z-
dc.date.available2021-10-28T00:03:36Z-
dc.date.issued2021en_UK
dc.identifier.urihttp://hdl.handle.net/1893/33523-
dc.description.abstractAdvances in media compression indicate significant potential to drive future media coding standards, e.g., Joint Photographic Experts Group's learning-based image coding technologies (JPEG-AI) and MJoint Video Experts Team's (JVET) deep neural networks (DNN) based video coding. These codecs in fact represent a new type of media format. As a dire consequence, traditional media security and forensic techniques will no longer be of use. This paper proposes an initial study on the effectiveness of traditional watermarking on two state-of-the-art learning based image coding. Results indicate that traditional watermarking methods are no longer effective. We also examine the forensic trails of various DNN architectures in the learning based codecs by proposing a residual noise based source identification algorithm that achieved 79% accuracy.en_UK
dc.language.isoenen_UK
dc.publisherIEEEen_UK
dc.relationBhowmik D, Elawady M & Nogueira K (2021) Security and Forensics Exploration of Learning-based Image Coding. In: 2021 IEEE International Conference on Visual Communications and Image Processing (VCIP). Visual Communications and Image Processing (VCIP 2021), Munich, 05.12.2021-08.12.2021. Piscataway, NJ, USA: IEEE. https://doi.org/10.1109/VCIP53242.2021.9675445en_UK
dc.rights© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_UK
dc.subjectMedia forensicsen_UK
dc.subjectsecurityen_UK
dc.subjectlearning based image codingen_UK
dc.subjectJPEG-AIen_UK
dc.subjectDNNen_UK
dc.subjectwatermarkingen_UK
dc.subjectsource identificationen_UK
dc.titleSecurity and Forensics Exploration of Learning-based Image Codingen_UK
dc.typeConference Paperen_UK
dc.identifier.doi10.1109/VCIP53242.2021.9675445en_UK
dc.citation.issn2642-9357en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.author.emaildeepayan.bhowmik@stir.ac.uken_UK
dc.citation.btitle2021 IEEE International Conference on Visual Communications and Image Processing (VCIP)en_UK
dc.citation.conferencedates2021-12-05 - 2021-12-08en_UK
dc.citation.conferencelocationMunichen_UK
dc.citation.conferencenameVisual Communications and Image Processing (VCIP 2021)en_UK
dc.citation.date20/01/2022en_UK
dc.citation.isbn978-1-7281-8551-4en_UK
dc.publisher.addressPiscataway, NJ, USAen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.wtid1766600en_UK
dc.contributor.orcid0000-0003-1762-1578en_UK
dc.contributor.orcid0000-0002-4930-3825en_UK
dc.contributor.orcid0000-0003-3308-6384en_UK
dc.date.accepted2021-08-30en_UK
dcterms.dateAccepted2021-08-30en_UK
dc.date.filedepositdate2021-10-26en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionAMen_UK
local.rioxx.authorBhowmik, Deepayan|0000-0003-1762-1578en_UK
local.rioxx.authorElawady, Mohamed|0000-0002-4930-3825en_UK
local.rioxx.authorNogueira, Keiller|0000-0003-3308-6384en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2021-10-27en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2021-10-27|en_UK
local.rioxx.filenameVCIP_21_Media_Security_camera_ready.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source978-1-7281-8551-4en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
VCIP_21_Media_Security_camera_ready.pdfFulltext - Accepted Version3.97 MBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.