Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/33505
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRuiz-Ramos, Javieren_UK
dc.contributor.authorMarino, Armandoen_UK
dc.contributor.authorBerardi, Andreaen_UK
dc.contributor.authorHardy, Andyen_UK
dc.contributor.authorSimpson, Matthewen_UK
dc.date.accessioned2021-10-21T00:18:12Z-
dc.date.available2021-10-21T00:18:12Z-
dc.date.issued2021en_UK
dc.identifier.urihttp://hdl.handle.net/1893/33505-
dc.description.abstractWetlands are among the most productive natural ecosystems in the world, generally being important biodiversity hotspots. However, the complex nature of these landscapes together with the fragile and dynamic relationships among the organisms inhabiting these regions, make wetland ecosystems especially vulnerable to environmental disturbance, such as climate change. Thus, developing new automated systems which allow continuous monitoring and mapping of wetland dynamics is crucial for preserving their natural health. Synthetic aperture radar (SAR) systems have proven useful in monitoring and mapping the hydrological processes of wetland ecosystems through the use of polarimetric change detection techniques. Nonetheless, most of these flood change detectors rely on static detection approaches, generally covering a limited period of time (e.g., pre and post flooding scenario comparison), thus failing in providing continuous information about the diverse hydrological mechanisms. In this context, this research presents a novel approach for monitoring the hydrological dynamics of wetlands in a continuous and near-real-time manner using dense Sentinel-1 image time-series. In this work, we have enhanced our recently developed algorithm based on cumulative sums (SAR-CUSUM), to include polarimetric information, which allows to classify the type of change due to the flood. The new processing stack exploits the polarimetric information of dual-pol Sentinel-1 dense time series for detecting floods and provide some separation between open water and flooded vegetation areas. The outcomes derived from this study emphasize the capabilities of dense SAR time-series for environmental monitoring while providing a useful tool which could be integrated into rapid response and wetland conservation management plans.en_UK
dc.language.isoenen_UK
dc.publisherIEEEen_UK
dc.relationRuiz-Ramos J, Marino A, Berardi A, Hardy A & Simpson M (2021) Characterization of Natural Wetlands with Cumulative Sums of Polarimetric Sar Timeseries. In: IGARSS 2021 - 2021 IEEE International Geoscience and Remote Sensing Symposium, Brussels, Belgium, 11.07.2021-16.07.2021. Piscataway, NJ, USA: IEEE. https://doi.org/10.1109/igarss47720.2021.9554249en_UK
dc.rights© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_UK
dc.subjectTime series analysisen_UK
dc.subjectVegetation mappingen_UK
dc.subjectToolsen_UK
dc.subjectWater conservationen_UK
dc.subjectOrganismsen_UK
dc.subjectFloodsen_UK
dc.subjectMonitoringen_UK
dc.titleCharacterization of Natural Wetlands with Cumulative Sums of Polarimetric Sar Timeseriesen_UK
dc.typeConference Paperen_UK
dc.identifier.doi10.1109/igarss47720.2021.9554249en_UK
dc.citation.issn2153-7003en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.citation.conferencedates2021-07-11 - 2021-07-16en_UK
dc.citation.conferencelocationBrussels, Belgiumen_UK
dc.citation.conferencenameIGARSS 2021 - 2021 IEEE International Geoscience and Remote Sensing Symposiumen_UK
dc.citation.date12/10/2021en_UK
dc.citation.isbn978-1-6654-0369-6en_UK
dc.publisher.addressPiscataway, NJ, USAen_UK
dc.contributor.affiliationThe Open Universityen_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.contributor.affiliationThe Open Universityen_UK
dc.contributor.affiliationAberystwyth Universityen_UK
dc.contributor.affiliationCobra Collectiveen_UK
dc.identifier.wtid1765036en_UK
dc.contributor.orcid0000-0002-4531-3102en_UK
dc.date.accepted2021-03-16en_UK
dcterms.dateAccepted2021-03-16en_UK
dc.date.filedepositdate2021-10-20en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionAMen_UK
local.rioxx.authorRuiz-Ramos, Javier|en_UK
local.rioxx.authorMarino, Armando|0000-0002-4531-3102en_UK
local.rioxx.authorBerardi, Andrea|en_UK
local.rioxx.authorHardy, Andy|en_UK
local.rioxx.authorSimpson, Matthew|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2021-10-20en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2021-10-20|en_UK
local.rioxx.filenameRuiz-Ramos-etal-IEEE-2021.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source978-1-6654-0369-6en_UK
Appears in Collections:Biological and Environmental Sciences Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
Ruiz-Ramos-etal-IEEE-2021.pdfFulltext - Accepted Version435.93 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.