Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/33484
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Brownlee, Alexander | en_UK |
dc.contributor.author | Wallace, Aidan | en_UK |
dc.contributor.author | Cairns, David | en_UK |
dc.contributor.editor | Martin, Kyle | en_UK |
dc.contributor.editor | Wiratunga, Nirmalie | en_UK |
dc.contributor.editor | Wijekoon, Anjana | en_UK |
dc.date.accessioned | 2021-10-20T00:03:38Z | - |
dc.date.available | 2021-10-20T00:03:38Z | - |
dc.date.issued | 2021 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/33484 | - |
dc.description.abstract | Metaheuristics are randomised search algorithms that are effective at finding ”good enough” solutions to optimisation problems. However, they present no justification for the generated solutions, and are non-trivial to analyse. We propose that identifying which combinations of variables strongly influence solution quality, and the nature of that relationship, represents a step towards explaining the choices made by the algorithm. Here, we present an approach to mining this information from a “surrogate fitness function” within a metaheuristic. The approach is demonstrated with two simple examples and a real-world case study. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | CEUR Workshop Proceedings | en_UK |
dc.relation | Brownlee A, Wallace A & Cairns D (2021) Mining Markov Network Surrogates to Explain the Results of Metaheuristic Optimisation. In: Martin K, Wiratunga N & Wijekoon A (eds.) Proceedings of the SICSA eXplainable Artifical Intelligence Workshop 2021. CEUR Workshop Proceedings, 2894. SICSA eXplainable Artifical Intelligence Workshop 2021, Aberdeen, 01.06.2021-01.06.2021. Aachen: CEUR Workshop Proceedings, pp. 64-70. http://ceur-ws.org/Vol-2894/short9.pdf | en_UK |
dc.relation.ispartofseries | CEUR Workshop Proceedings, 2894 | en_UK |
dc.rights | Copyright © 2021 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0 - https://creativecommons.org/licenses/by/4.0/). | en_UK |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en_UK |
dc.subject | metaheuristics | en_UK |
dc.subject | surrogates | en_UK |
dc.subject | optimisation | en_UK |
dc.subject | explainability | en_UK |
dc.title | Mining Markov Network Surrogates to Explain the Results of Metaheuristic Optimisation | en_UK |
dc.type | Conference Paper | en_UK |
dc.citation.issn | 1613-0073 | en_UK |
dc.citation.spage | 64 | en_UK |
dc.citation.epage | 70 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.type.status | VoR - Version of Record | en_UK |
dc.identifier.url | http://ceur-ws.org/Vol-2894/short9.pdf | en_UK |
dc.citation.btitle | Proceedings of the SICSA eXplainable Artifical Intelligence Workshop 2021 | en_UK |
dc.citation.conferencedates | 2021-06-01 - 2021-06-01 | en_UK |
dc.citation.conferencelocation | Aberdeen | en_UK |
dc.citation.conferencename | SICSA eXplainable Artifical Intelligence Workshop 2021 | en_UK |
dc.publisher.address | Aachen | en_UK |
dc.contributor.affiliation | Computing Science | en_UK |
dc.contributor.affiliation | Computing Science | en_UK |
dc.contributor.affiliation | Computing Science | en_UK |
dc.identifier.wtid | 1731942 | en_UK |
dc.contributor.orcid | 0000-0003-2892-5059 | en_UK |
dc.contributor.orcid | 0000-0002-0246-3821 | en_UK |
dc.date.accepted | 2021-05-12 | en_UK |
dcterms.dateAccepted | 2021-05-12 | en_UK |
dc.date.filedepositdate | 2021-10-18 | en_UK |
rioxxterms.apc | paid | en_UK |
rioxxterms.type | Conference Paper/Proceeding/Abstract | en_UK |
rioxxterms.version | VoR | en_UK |
local.rioxx.author | Brownlee, Alexander|0000-0003-2892-5059 | en_UK |
local.rioxx.author | Wallace, Aidan| | en_UK |
local.rioxx.author | Cairns, David|0000-0002-0246-3821 | en_UK |
local.rioxx.project | Internal Project|University of Stirling|https://isni.org/isni/0000000122484331 | en_UK |
local.rioxx.contributor | Martin, Kyle| | en_UK |
local.rioxx.contributor | Wiratunga, Nirmalie| | en_UK |
local.rioxx.contributor | Wijekoon, Anjana| | en_UK |
local.rioxx.freetoreaddate | 2021-10-19 | en_UK |
local.rioxx.licence | http://creativecommons.org/licenses/by/4.0/|2021-10-19| | en_UK |
local.rioxx.filename | short9.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 1613-0073 | en_UK |
Appears in Collections: | Computing Science and Mathematics Conference Papers and Proceedings |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
short9.pdf | Fulltext - Published Version | 710.64 kB | Adobe PDF | View/Open |
This item is protected by original copyright |
A file in this item is licensed under a Creative Commons License
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.