Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/33266
Full metadata record
DC FieldValueLanguage
dc.contributor.authorArnesen, Allan Saddien_UK
dc.contributor.authorSilva, Thiago Sanna Freireen_UK
dc.contributor.authorHess, Laura Len_UK
dc.contributor.authorNovo, Evlyn Márcia Leão de Moraesen_UK
dc.contributor.authorRudorff, Conrado Men_UK
dc.contributor.authorChapman, Bruce Den_UK
dc.contributor.authorMcDonald, Kyle Cen_UK
dc.date.accessioned2021-09-09T00:07:39Z-
dc.date.available2021-09-09T00:07:39Z-
dc.date.issued2013-03-15en_UK
dc.identifier.urihttp://hdl.handle.net/1893/33266-
dc.description.abstractThe Amazon River floodplain is subject to large seasonal variations in water level and flood extent, due to the large size and low relief of the basin, and the large amount of precipitation in the region. Synthetic Aperture Radar (SAR) data can be used to map flooded area in these wetlands, given its ability to provide continuous information without being heavily affected by cloud cover. As part of JAXA's Kyoto & Carbon Initiative, extensive wide-swath, multi-temporal SAR coverage of the Amazon basin has been obtained using the ScanSAR mode of ALOS PALSAR. This study presents a method for monitoring flood extent variation using ALOS ScanSAR images, tested at the Curuai Lake floodplain, in the lower Amazon River, Brazil. Twelve ScanSAR scenes were acquired between 2006 and 2010, including seven during the 2007 hydrological year. Water level records, field photographs, optical images (Landsat-5/TM and MODIS/Terra and Aqua) and topographic data were used as auxiliary information. A data mining algorithm allowed the implementation of a hierarchical, object-based classification algorithm, able to map land cover types and flooding status in the study area for all available dates. Land cover based on the entire time series (classification levels 1 and 2) had overall accuracies of 90% and 83%, respectively. Level 3 classifications (one map per image date) were validated only for the lowest and highest water stages, with overall accuracies of 76% and 78%, respectively. Total flood extent (Level 4) was mapped with 84% and 94% accuracies, for the low and high water stages, respectively. Regression models were fitted between mapped flooded area and water levels at the Curuai gauge to predict flood extent. A polynomial model had R2 = 0.95 (p < 0.05) and an overall root mean square error (RMSE) of 241 km2, while a logistic model had R2 = 0.98 (p < 0.05) and RMSE = 127 km2.en_UK
dc.language.isoenen_UK
dc.publisherElsevieren_UK
dc.relationArnesen AS, Silva TSF, Hess LL, Novo EMLdM, Rudorff CM, Chapman BD & McDonald KC (2013) Monitoring flood extent in the lower Amazon River floodplain using ALOS/PALSAR ScanSAR images. Remote Sensing of Environment, 130, pp. 51-61. https://doi.org/10.1016/j.rse.2012.10.035en_UK
dc.rightsThe publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.rights.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserveden_UK
dc.subjectObject-based image analysisen_UK
dc.subjectMulti-temporal analysisen_UK
dc.subjectIncidence angleen_UK
dc.subjectWetlandsen_UK
dc.subjectSynthetic aperture radaren_UK
dc.subjectKyoto & Carbon Initiativeen_UK
dc.titleMonitoring flood extent in the lower Amazon River floodplain using ALOS/PALSAR ScanSAR imagesen_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate2999-12-31en_UK
dc.rights.embargoreason[1-s2.0-S0034425712004257-main.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work.en_UK
dc.identifier.doi10.1016/j.rse.2012.10.035en_UK
dc.citation.jtitleRemote Sensing of Environmenten_UK
dc.citation.issn0034-4257en_UK
dc.citation.volume130en_UK
dc.citation.spage51en_UK
dc.citation.epage61en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderBrazilian National Research Councilen_UK
dc.author.emailthiago.sf.silva@stir.ac.uken_UK
dc.citation.date17/12/2012en_UK
dc.contributor.affiliationInstituto Nacional de Pesquisas Espaciais (INPE)en_UK
dc.contributor.affiliationInstituto Nacional de Pesquisas Espaciaisen_UK
dc.contributor.affiliationUniversity of California, Santa Barbaraen_UK
dc.contributor.affiliationInstituto Nacional de Pesquisas Espaciais (INPE)en_UK
dc.contributor.affiliationUniversity of California, Santa Barbaraen_UK
dc.contributor.affiliationCalifornia Institute of Technologyen_UK
dc.contributor.affiliationCalifornia Institute of Technologyen_UK
dc.identifier.isiWOS:000315008000005en_UK
dc.identifier.scopusid2-s2.0-84870905599en_UK
dc.identifier.wtid1239040en_UK
dc.contributor.orcid0000-0001-8174-0489en_UK
dc.date.accepted2012-10-27en_UK
dcterms.dateAccepted2012-10-27en_UK
dc.date.filedepositdate2021-09-08en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorArnesen, Allan Saddi|en_UK
local.rioxx.authorSilva, Thiago Sanna Freire|0000-0001-8174-0489en_UK
local.rioxx.authorHess, Laura L|en_UK
local.rioxx.authorNovo, Evlyn Márcia Leão de Moraes|en_UK
local.rioxx.authorRudorff, Conrado M|en_UK
local.rioxx.authorChapman, Bruce D|en_UK
local.rioxx.authorMcDonald, Kyle C|en_UK
local.rioxx.projectProject ID unknown|Brazilian National Research Council|en_UK
local.rioxx.freetoreaddate2262-11-18en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||en_UK
local.rioxx.filename1-s2.0-S0034425712004257-main.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source0034-4257en_UK
Appears in Collections:Biological and Environmental Sciences Journal Articles

Files in This Item:
File Description SizeFormat 
1-s2.0-S0034425712004257-main.pdfFulltext - Published Version1.49 MBAdobe PDFUnder Permanent Embargo    Request a copy


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.