Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/33250
Appears in Collections:Psychology Journal Articles
Peer Review Status: Refereed
Title: Hill Runner's Physiology, Performance and Nutrition: A Descriptive Study
Author(s): Lember, Liivia-Mari
Di Virgilio, Thomas George
Brown, Eilidh MacKenzie
Rodriguez-Sanchez, Nidia
Keywords: endurance sport
body composition
anthropometry
VO2max
energy intake and expenditure
diet
Issue Date: 2021
Date Deposited: 8-Sep-2021
Citation: Lember L, Di Virgilio TG, Brown EM & Rodriguez-Sanchez N (2021) Hill Runner's Physiology, Performance and Nutrition: A Descriptive Study. Frontiers in Sports and Active Living, 3, Art. No.: 676212. https://doi.org/10.3389/fspor.2021.676212
Abstract: Objectives: The aim of this descriptive study was to characterise anthropometric variables, aerobic capacity, running performance and energy intake and expenditure of hill runners in free-living conditions, and to investigate the relationship between age, anthropometric variables, aerobic capacity and running performance. Methods: Twenty-eight hill runners participated in this study (17 males and 11 females; aged 18–65 years). Body fat percentage estimate, sum of eight skinfolds (triceps, subscapular, biceps, iliac crest, supraspinale, abdominal, front thigh and medial calf) and maximal oxygen capacity (VO2max) were assessed in a laboratory setting. Participants also completed a timed hill run (Dumyat Hill, Scotland, ascent: 420 m, distance: 8 km) while wearing a portable gas analyzer to assess oxygen consumption (VO2). Energy intake and energy expenditure were assessed in free-living conditions over three consecutive days different from the testing days through self-reported food diaries and accelerometers. Results: VO2max assessed in the lab (51.2 ± 7.6 ml·min−1·kg−1) showed a weak negative relationship with age [rs(23) = −0.38, p = 0.08]. Neither body fat percentage (median 12.4; IQR 10.1–17.1) nor the sum of skinfolds (median 81.8; IQR 62.4–97.8 mm) correlated with age [rs(28) = 0.001, p = 0.10 and 26 rs(28) = −0.02, p = 0.94, respectively]. The observed intensity of the hill run was 89 ± 6% of the age predicted maximum heart rate and 87 ± 9% of the VO2max observed in the lab. Hill running performance correlated with VO2max [r(21) = 0.76, p < 0.001], age [rs(26) = −0.44, p = 0.02] and with estimated body fat percentage and sum of skinfolds [rs(26) = −0.66, p < 0.001 and rs(26) = −0.49, p = 0.01, respectively]. Energy intake negatively correlated with age [rs(26) = −0.43, p = 0.03], with the overall energy intake being significantly lower than the total energy expenditure (2273 ± 550 vs. 2879 ± 510 kcal·day−1; p < 0.001; d = 1.05). Conclusion: This study demonstrated that hill running performance is positively associated with greater aerobic capacity and negatively associated with increases in adiposity and age. Further, the study highlights that hill runners are at risk of negative energy balance.
DOI Link: 10.3389/fspor.2021.676212
Rights: © 2021 Lember, Di Virgilio, Brown and Rodriguez-Sanchez. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY - https://creativecommons.org/licenses/by/4.0/). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Licence URL(s): http://creativecommons.org/licenses/by/4.0/

Files in This Item:
File Description SizeFormat 
fspor-03-676212.pdfFulltext - Published Version771.49 kBAdobe PDFView/Open



This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.