Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/33232
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNogueira, Keilleren_UK
dc.contributor.authorChanussot, Jocelynen_UK
dc.contributor.authorMura, Mauro Dallaen_UK
dc.contributor.authorDos Santos, Jefersson Aen_UK
dc.date.accessioned2021-09-07T00:02:20Z-
dc.date.available2021-09-07T00:02:20Z-
dc.date.issued2021en_UK
dc.identifier.urihttp://hdl.handle.net/1893/33232-
dc.description.abstractOver the past decade, Convolutional Networks (ConvNets) have renewed the perspectives of the research and industrial communities. Although this deep learning technique may be composed of multiple layers, its core operation is the convolution, an important linear filtering process. Easy and fast to implement, convolutions actually play a major role, not only in ConvNets, but in digital image processing and analysis as a whole, being effective for several tasks. However, aside from convolutions, researchers also proposed and developed non-linear filters, such as operators provided by mathematical morphology. Even though these are not so computationally efficient as the linear filters, in general, they are able to capture different patterns and tackle distinct problems when compared to the convolutions. In this paper, we propose a new paradigm for deep networks where convolutions are replaced by non-linear morphological filters. Aside from performing the operation, the proposed Deep Morphological Network (DeepMorphNet) is also able to learn the morphological filters (and consequently the features) based on the input data. While this process raises challenging issues regarding training and actual implementation, the proposed DeepMorphNet proves to be able to extract features and solve problems that traditional architectures with standard convolution filters cannot.en_UK
dc.language.isoenen_UK
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_UK
dc.relationNogueira K, Chanussot J, Mura MD & Dos Santos JA (2021) An Introduction to Deep Morphological Networks. <i>IEEE Access</i>, 9, pp. 114308-114324. https://doi.org/10.1109/access.2021.3104405en_UK
dc.rightsThis work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectConvolutional networksen_UK
dc.subjectdeep learningen_UK
dc.subjectdeep morphological networksen_UK
dc.subjectmathematical morphologyen_UK
dc.titleAn Introduction to Deep Morphological Networksen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1109/access.2021.3104405en_UK
dc.citation.jtitleIEEE Accessen_UK
dc.citation.issn2169-3536en_UK
dc.citation.volume9en_UK
dc.citation.spage114308en_UK
dc.citation.epage114324en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderCoordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001en_UK
dc.contributor.funderNational Council for Scientific and Technological Developmenten_UK
dc.contributor.funderNational Council for Scientific and Technological Developmenten_UK
dc.contributor.funderCoordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001en_UK
dc.contributor.funderMinas Gerais Research Funding Foundationen_UK
dc.citation.date12/08/2021en_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.contributor.affiliationUniversite de Grenobleen_UK
dc.contributor.affiliationUniversité Grenoble Alpes (UGA)en_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.isiWOS:000686753200001en_UK
dc.identifier.scopusid2-s2.0-85113334743en_UK
dc.identifier.wtid1753029en_UK
dc.contributor.orcid0000-0003-3308-6384en_UK
dc.contributor.orcid0000-0002-8889-1586en_UK
dc.date.accepted2021-08-09en_UK
dcterms.dateAccepted2021-08-09en_UK
dc.date.filedepositdate2021-09-06en_UK
rioxxterms.apcpaiden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorNogueira, Keiller|0000-0003-3308-6384en_UK
local.rioxx.authorChanussot, Jocelyn|en_UK
local.rioxx.authorMura, Mauro Dalla|en_UK
local.rioxx.authorDos Santos, Jefersson A|0000-0002-8889-1586en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2021-09-06en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2021-09-06|en_UK
local.rioxx.filenameAn_Introduction_to_Deep_Morphological_Networks.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source2169-3536en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
An_Introduction_to_Deep_Morphological_Networks.pdfFulltext - Published Version4.5 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.