Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/33216
Full metadata record
DC FieldValueLanguage
dc.contributor.authorShen, Yingdongen_UK
dc.contributor.authorXie, Wenliangen_UK
dc.contributor.authorLi, Jingpengen_UK
dc.date.accessioned2021-09-02T00:05:36Z-
dc.date.available2021-09-02T00:05:36Z-
dc.date.issued2021en_UK
dc.identifier.other3529984en_UK
dc.identifier.urihttp://hdl.handle.net/1893/33216-
dc.description.abstractThe timetabling problem (TTP) and vehicle scheduling problem (VSP) are two indispensable problems in public transit planning process. They used to be solved in sequence; hence, optimality of resulting solutions is compromised. To get better results, some integrated approaches emerge to solve the TTP and VSP as an integrated problem. In the existing integrated approaches, the passenger comfort on bus and the uncertainty in the real world are rarely considered. To provide better service for passengers and enhance the robustness of the schedule to be compiled, we study the integrated optimization of TTP and VSP with uncertainty. In this paper, a novel multiobjective optimization approach with the objectives of minimizing the passenger travel cost, the vehicle scheduling cost, and the incompatible trip-link cost is proposed. Meanwhile, a multiobjective hybrid algorithm, which is a combination of the self-adjust genetic algorithm (SGA), large neighborhood search (LNS) algorithm, and Pareto separation operator (PSO), is applied to solve the integrated optimization problem. The experimental results show that the approach outperforms existing approaches in terms of service level and robustness.en_UK
dc.language.isoenen_UK
dc.publisherHindawi Publishing Corporationen_UK
dc.relationShen Y, Xie W & Li J (2021) A MultiObjective Optimization Approach for Integrated Timetabling and Vehicle Scheduling with Uncertainty. Journal of Advanced Transportation, 2021, Art. No.: 3529984. https://doi.org/10.1155/2021/3529984en_UK
dc.rightsCopyright © 2021 Yindong Shen et al. This is an open access article distributed under the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.titleA MultiObjective Optimization Approach for Integrated Timetabling and Vehicle Scheduling with Uncertaintyen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1155/2021/3529984en_UK
dc.citation.jtitleJournal of Advanced Transportationen_UK
dc.citation.issn2042-3195en_UK
dc.citation.issn0197-6729en_UK
dc.citation.volume2021en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.citation.date05/08/2021en_UK
dc.contributor.affiliationHuazhong University of Science and Technologyen_UK
dc.contributor.affiliationHuazhong University of Science and Technologyen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.isiWOS:000804170900001en_UK
dc.identifier.scopusid2-s2.0-85112865785en_UK
dc.identifier.wtid1751563en_UK
dc.contributor.orcid0000-0002-6758-0084en_UK
dc.date.accepted2021-07-26en_UK
dcterms.dateAccepted2021-07-26en_UK
dc.date.filedepositdate2021-09-01en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorShen, Yingdong|en_UK
local.rioxx.authorXie, Wenliang|en_UK
local.rioxx.authorLi, Jingpeng|0000-0002-6758-0084en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2021-09-01en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2021-09-01|en_UK
local.rioxx.filename3529984.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source2042-3195en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
3529984.pdfFulltext - Published Version1.66 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.