Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/33215
Appears in Collections:Aquaculture Journal Articles
Peer Review Status: Refereed
Title: Release of chromatin extracellular traps by phagocytes of Atlantic salmon, Salmo salar (LINNAEUS, 1758)
Author(s): Álvarez de Haro, Neila
Van, Andre P
Robb, Calum T
Rossi, Adriano G
Desbois, Andrew P
Keywords: ETosis
Macrophage
NETosis
Neutrophil extracellular traps
Polymorphonucleocyte
Issue Date: Dec-2021
Date Deposited: 1-Sep-2021
Citation: Álvarez de Haro N, Van AP, Robb CT, Rossi AG & Desbois AP (2021) Release of chromatin extracellular traps by phagocytes of Atlantic salmon, Salmo salar (LINNAEUS, 1758). Fish and Shellfish Immunology, 119, pp. 209-219. https://doi.org/10.1016/j.fsi.2021.08.023
Abstract: Neutrophils release chromatin extracellular traps (ETs) as part of the fish innate immune response to counter the threats posed by microbial pathogens. However, relatively little attention has been paid to this phenomenon in many commercially farmed species, despite the importance of understanding host-pathogen interactions and the potential to influence ET release to reduce disease outbreaks. The aim of this present study was to investigate the release of ETs by Atlantic salmon (Salmo salar L.) immune cells. Extracellular structures resembling ETs of different morphology were observed by fluorescence microscopy in neutrophil suspensions in vitro, as these structures stained positively with Sytox Green and were digestible with DNase I. Immunofluorescence studies confirmed the ET structures to be decorated with histones H1 and H2A and neutrophil elastase, which are characteristic for ETs in mammals and other organisms. Although the ETs were released spontaneously, release in neutrophil suspensions was stimulated most significantly with 5 μg/ml calcium ionophore (CaI) for 1 h, whilst the fish pathogenic bacterium Aeromonas salmonicida (isolates 30411 and Hooke) also exerted a stimulatory effect. Microscopic observations revealed bacteria in association with ETs, and fewer bacterial colonies of A. salmonicida Hooke were recovered at 3 h after co-incubation with neutrophils that had been induced to release ETs. Interestingly, spontaneous release of ETs was inversely associated with fish mass (p  < 0.05), a surrogate for age. Moreover, suspensions enriched for macrophages and stimulated with 5 μg/ml CaI released ET-like structures that occasionally led to the formation of large clumps of cells. A deeper understanding for the roles and functions of ETs within innate immunity of fish hosts, and their interaction with microbial pathogens, may open new avenues towards protecting cultured stocks against infectious diseases.
DOI Link: 10.1016/j.fsi.2021.08.023
Rights: This is an open access article distributed under the terms of the Creative Commons CC-BY license (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. You are not required to obtain permission to reuse this article.
Licence URL(s): http://creativecommons.org/licenses/by/4.0/

Files in This Item:
File Description SizeFormat 
1-s2.0-S105046482100245X-main.pdfFulltext - Published Version4.28 MBAdobe PDFView/Open



This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.