Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/33175
Appears in Collections:Biological and Environmental Sciences Journal Articles
Peer Review Status: Refereed
Title: Geology and Geochemistry of Noachian Bedrock and Alteration Events, Meridiani Planum, Mars: MER Opportunity Observations
Author(s): Mittlefehldt, David W
Gellert, Ralf
VanBommel, Scott
Arvidson, Raymond E
Ashley, James W
Clark, Benton C
Crumpler, Larry S
Farrand, William H
Golombek, Mattew P
Grant, John A
Morris, Richard V
Schroeder, Christian
Keywords: Mars geology
Mars geochemistry
Noachian crust
Endeavour crater
Mars Exploration Rover mission
Issue Date: Sep-2021
Date Deposited: 26-Aug-2021
Citation: Mittlefehldt DW, Gellert R, VanBommel S, Arvidson RE, Ashley JW, Clark BC, Crumpler LS, Farrand WH, Golombek MP, Grant JA, Morris RV & Schroeder C (2021) Geology and Geochemistry of Noachian Bedrock and Alteration Events, Meridiani Planum, Mars: MER Opportunity Observations. Journal of Geophysical Research: Planets, 126 (9), Art. No.: e2021JE006915. https://doi.org/10.1029/2021JE006915
Abstract: We have used Mars Exploration Rover Opportunity data to investigate the origin and alteration of lithic types along the western rim of Noachian-aged Endeavour crater on Meridiani Planum. Two geologic units are identified along the rim: the Shoemaker and Matijevic formations. The Shoemaker formation consists of two types of polymict impact breccia: clast rich with coarser clasts in upper units; clast-poor with smaller clasts in lower units. Comparisons terrestrial craters show that the lower units represent more distal ejecta from at least two earlier impacts, and the upper units are proximal ejecta from Endeavour crater. Both are mixtures of target rocks of basaltic composition with subtle compositional variations caused by differences in post-impact alteration. The Matijevic formation and lower Shoemaker units represent pre-Endeavour geology, which we equate with the regional Noachian subdued cratered unit. An alteration style unique to these rocks is formation of smectite and Si- and Al-rich vein-like structures crosscutting outcrops. Post-Endeavour alteration is dominated by sulfate formation. Rim-crossing fracture zones include regions of alteration that produced Mg-sulfates as a dominant phase, plausibly closely associated in time with the Endeavour impact. Calcium-sulfate vein formation occurred over extended time, including before the Endeavour impact and after the Endeavour rim had been substantially degraded, likely after deposition of the Burns formation that surrounds and embays the rim. Differences in Mg, Ca and Cl concentrations on rock surfaces and interiors indicate mobilization of salts by transient water that has occurred recently and may be ongoing.
DOI Link: 10.1029/2021JE006915
Rights: © 2021 The Authors. This article has been contributed to by US Government employees and their work is in the public domain in the USA. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
Licence URL(s): http://creativecommons.org/licenses/by-nc-nd/4.0/

Files in This Item:
File Description SizeFormat 
2021JE006915.pdfFulltext - Published Version4.59 MBAdobe PDFView/Open



This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.