Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/33143
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMartins, Jose Augusto Correaen_UK
dc.contributor.authorNogueira, Keilleren_UK
dc.contributor.authorOsco, Lucas Pradoen_UK
dc.contributor.authorGomes, Felipe David Georgesen_UK
dc.contributor.authorFuruya, Danielle Elis Garciaen_UK
dc.contributor.authorGonçalves, Wesley Nunesen_UK
dc.contributor.authorSant’ana, Diego Andreen_UK
dc.contributor.authorRamos, Ana Paula Marquesen_UK
dc.contributor.authorLiesenberg, Veraldoen_UK
dc.contributor.authordos Santos, Jefersson Alexen_UK
dc.contributor.authorde Oliveira, Paulo Tarso Sanchesen_UK
dc.contributor.authorMarcato Junior, Joseen_UK
dc.date.accessioned2021-08-25T00:06:10Z-
dc.date.available2021-08-25T00:06:10Z-
dc.date.issued2021-08en_UK
dc.identifier.other3054en_UK
dc.identifier.urihttp://hdl.handle.net/1893/33143-
dc.description.abstractUrban forests are an important part of any city, given that they provide several environmental benefits, such as improving urban drainage, climate regulation, public health, biodiversity, and others. However, tree detection in cities is challenging, given the irregular shape, size, occlusion, and complexity of urban areas. With the advance of environmental technologies, deep learning segmentation mapping methods can map urban forests accurately. We applied a region-based CNN object instance segmentation algorithm for the semantic segmentation of tree canopies in urban environments based on aerial RGB imagery. To the best of our knowledge, no study investigated the performance of deep learning-based methods for segmentation tasks inside the Cerrado biome, specifically for urban tree segmentation. Five state-of-the-art architectures were evaluated, namely: Fully Convolutional Network; U-Net; SegNet; Dynamic Dilated Convolution Network and DeepLabV3+. The experimental analysis showed the effectiveness of these methods reporting results such as pixel accuracy of 96,35%, an average accuracy of 91.25%, F1-score of 91.40%, Kappa of 82.80% and IoU of 73.89%. We also determined the inference time needed per area, and the deep learning methods investigated after the training proved to be suitable to solve this task, providing fast and effective solutions with inference time varying from 0.042 to 0.153 minutes per hectare. We conclude that the semantic segmentation of trees inside urban environments is highly achievable with deep neural networks. This information could be of high importance to decision-making and may contribute to the management of urban systems. It should be also important to mention that the dataset used in this work is available on our website.en_UK
dc.language.isoenen_UK
dc.publisherMDPIen_UK
dc.relationMartins JAC, Nogueira K, Osco LP, Gomes FDG, Furuya DEG, Gonçalves WN, Sant’ana DA, Ramos APM, Liesenberg V, dos Santos JA, de Oliveira PTS & Marcato Junior J (2021) Semantic segmentation of tree-canopy in urban environment with pixel-wise deep learning. <i>Remote Sensing</i>, 13 (16), Art. No.: 3054. https://doi.org/10.3390/rs13163054en_UK
dc.rights© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectremote sensingen_UK
dc.subjectimage segmentationen_UK
dc.subjectsustainabilityen_UK
dc.subjectconvolutional neural networken_UK
dc.subjecturban environmenten_UK
dc.titleSemantic segmentation of tree-canopy in urban environment with pixel-wise deep learningen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.3390/rs13163054en_UK
dc.citation.jtitleRemote Sensingen_UK
dc.citation.issn2072-4292en_UK
dc.citation.volume13en_UK
dc.citation.issue16en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderBrazilian National Research Councilen_UK
dc.citation.date04/08/2021en_UK
dc.contributor.affiliationFederal University of Mato Grosso do Sulen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationUniversity of Western Sao Pauloen_UK
dc.contributor.affiliationUniversity of Western Sao Pauloen_UK
dc.contributor.affiliationUniversity of Western Sao Pauloen_UK
dc.contributor.affiliationFederal University of Mato Grosso do Sulen_UK
dc.contributor.affiliationDom Bosco Catholic Universityen_UK
dc.contributor.affiliationUniversity of Western Sao Pauloen_UK
dc.contributor.affiliationSanta Catarina State Universityen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationFederal University of Mato Grosso do Sulen_UK
dc.contributor.affiliationFederal University of Mato Grosso do Sulen_UK
dc.identifier.isiWOS:000690104700001en_UK
dc.identifier.scopusid2-s2.0-85112288027en_UK
dc.identifier.wtid1749683en_UK
dc.contributor.orcid0000-0003-3308-6384en_UK
dc.contributor.orcid0000-0002-8889-1586en_UK
dc.date.accepted2021-07-16en_UK
dcterms.dateAccepted2021-07-16en_UK
dc.date.filedepositdate2021-08-24en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorMartins, Jose Augusto Correa|en_UK
local.rioxx.authorNogueira, Keiller|0000-0003-3308-6384en_UK
local.rioxx.authorOsco, Lucas Prado|en_UK
local.rioxx.authorGomes, Felipe David Georges|en_UK
local.rioxx.authorFuruya, Danielle Elis Garcia|en_UK
local.rioxx.authorGonçalves, Wesley Nunes|en_UK
local.rioxx.authorSant’ana, Diego Andre|en_UK
local.rioxx.authorRamos, Ana Paula Marques|en_UK
local.rioxx.authorLiesenberg, Veraldo|en_UK
local.rioxx.authordos Santos, Jefersson Alex|0000-0002-8889-1586en_UK
local.rioxx.authorde Oliveira, Paulo Tarso Sanches|en_UK
local.rioxx.authorMarcato Junior, Jose|en_UK
local.rioxx.projectProject ID unknown|Brazilian National Research Council|en_UK
local.rioxx.freetoreaddate2021-08-24en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2021-08-24|en_UK
local.rioxx.filenameremotesensing-13-03054.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source2072-4292en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
remotesensing-13-03054.pdfFulltext - Published Version17.71 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.