Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/33143
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Martins, Jose Augusto Correa | en_UK |
dc.contributor.author | Nogueira, Keiller | en_UK |
dc.contributor.author | Osco, Lucas Prado | en_UK |
dc.contributor.author | Gomes, Felipe David Georges | en_UK |
dc.contributor.author | Furuya, Danielle Elis Garcia | en_UK |
dc.contributor.author | Gonçalves, Wesley Nunes | en_UK |
dc.contributor.author | Sant’ana, Diego Andre | en_UK |
dc.contributor.author | Ramos, Ana Paula Marques | en_UK |
dc.contributor.author | Liesenberg, Veraldo | en_UK |
dc.contributor.author | dos Santos, Jefersson Alex | en_UK |
dc.contributor.author | de Oliveira, Paulo Tarso Sanches | en_UK |
dc.contributor.author | Marcato Junior, Jose | en_UK |
dc.date.accessioned | 2021-08-25T00:06:10Z | - |
dc.date.available | 2021-08-25T00:06:10Z | - |
dc.date.issued | 2021-08 | en_UK |
dc.identifier.other | 3054 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/33143 | - |
dc.description.abstract | Urban forests are an important part of any city, given that they provide several environmental benefits, such as improving urban drainage, climate regulation, public health, biodiversity, and others. However, tree detection in cities is challenging, given the irregular shape, size, occlusion, and complexity of urban areas. With the advance of environmental technologies, deep learning segmentation mapping methods can map urban forests accurately. We applied a region-based CNN object instance segmentation algorithm for the semantic segmentation of tree canopies in urban environments based on aerial RGB imagery. To the best of our knowledge, no study investigated the performance of deep learning-based methods for segmentation tasks inside the Cerrado biome, specifically for urban tree segmentation. Five state-of-the-art architectures were evaluated, namely: Fully Convolutional Network; U-Net; SegNet; Dynamic Dilated Convolution Network and DeepLabV3+. The experimental analysis showed the effectiveness of these methods reporting results such as pixel accuracy of 96,35%, an average accuracy of 91.25%, F1-score of 91.40%, Kappa of 82.80% and IoU of 73.89%. We also determined the inference time needed per area, and the deep learning methods investigated after the training proved to be suitable to solve this task, providing fast and effective solutions with inference time varying from 0.042 to 0.153 minutes per hectare. We conclude that the semantic segmentation of trees inside urban environments is highly achievable with deep neural networks. This information could be of high importance to decision-making and may contribute to the management of urban systems. It should be also important to mention that the dataset used in this work is available on our website. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | MDPI | en_UK |
dc.relation | Martins JAC, Nogueira K, Osco LP, Gomes FDG, Furuya DEG, Gonçalves WN, Sant’ana DA, Ramos APM, Liesenberg V, dos Santos JA, de Oliveira PTS & Marcato Junior J (2021) Semantic segmentation of tree-canopy in urban environment with pixel-wise deep learning. <i>Remote Sensing</i>, 13 (16), Art. No.: 3054. https://doi.org/10.3390/rs13163054 | en_UK |
dc.rights | © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). | en_UK |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en_UK |
dc.subject | remote sensing | en_UK |
dc.subject | image segmentation | en_UK |
dc.subject | sustainability | en_UK |
dc.subject | convolutional neural network | en_UK |
dc.subject | urban environment | en_UK |
dc.title | Semantic segmentation of tree-canopy in urban environment with pixel-wise deep learning | en_UK |
dc.type | Journal Article | en_UK |
dc.identifier.doi | 10.3390/rs13163054 | en_UK |
dc.citation.jtitle | Remote Sensing | en_UK |
dc.citation.issn | 2072-4292 | en_UK |
dc.citation.volume | 13 | en_UK |
dc.citation.issue | 16 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.citation.peerreviewed | Refereed | en_UK |
dc.type.status | VoR - Version of Record | en_UK |
dc.contributor.funder | Brazilian National Research Council | en_UK |
dc.citation.date | 04/08/2021 | en_UK |
dc.contributor.affiliation | Federal University of Mato Grosso do Sul | en_UK |
dc.contributor.affiliation | Computing Science | en_UK |
dc.contributor.affiliation | University of Western Sao Paulo | en_UK |
dc.contributor.affiliation | University of Western Sao Paulo | en_UK |
dc.contributor.affiliation | University of Western Sao Paulo | en_UK |
dc.contributor.affiliation | Federal University of Mato Grosso do Sul | en_UK |
dc.contributor.affiliation | Dom Bosco Catholic University | en_UK |
dc.contributor.affiliation | University of Western Sao Paulo | en_UK |
dc.contributor.affiliation | Santa Catarina State University | en_UK |
dc.contributor.affiliation | Computing Science | en_UK |
dc.contributor.affiliation | Federal University of Mato Grosso do Sul | en_UK |
dc.contributor.affiliation | Federal University of Mato Grosso do Sul | en_UK |
dc.identifier.isi | WOS:000690104700001 | en_UK |
dc.identifier.scopusid | 2-s2.0-85112288027 | en_UK |
dc.identifier.wtid | 1749683 | en_UK |
dc.contributor.orcid | 0000-0003-3308-6384 | en_UK |
dc.contributor.orcid | 0000-0002-8889-1586 | en_UK |
dc.date.accepted | 2021-07-16 | en_UK |
dcterms.dateAccepted | 2021-07-16 | en_UK |
dc.date.filedepositdate | 2021-08-24 | en_UK |
rioxxterms.apc | not required | en_UK |
rioxxterms.type | Journal Article/Review | en_UK |
rioxxterms.version | VoR | en_UK |
local.rioxx.author | Martins, Jose Augusto Correa| | en_UK |
local.rioxx.author | Nogueira, Keiller|0000-0003-3308-6384 | en_UK |
local.rioxx.author | Osco, Lucas Prado| | en_UK |
local.rioxx.author | Gomes, Felipe David Georges| | en_UK |
local.rioxx.author | Furuya, Danielle Elis Garcia| | en_UK |
local.rioxx.author | Gonçalves, Wesley Nunes| | en_UK |
local.rioxx.author | Sant’ana, Diego Andre| | en_UK |
local.rioxx.author | Ramos, Ana Paula Marques| | en_UK |
local.rioxx.author | Liesenberg, Veraldo| | en_UK |
local.rioxx.author | dos Santos, Jefersson Alex|0000-0002-8889-1586 | en_UK |
local.rioxx.author | de Oliveira, Paulo Tarso Sanches| | en_UK |
local.rioxx.author | Marcato Junior, Jose| | en_UK |
local.rioxx.project | Project ID unknown|Brazilian National Research Council| | en_UK |
local.rioxx.freetoreaddate | 2021-08-24 | en_UK |
local.rioxx.licence | http://creativecommons.org/licenses/by/4.0/|2021-08-24| | en_UK |
local.rioxx.filename | remotesensing-13-03054.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 2072-4292 | en_UK |
Appears in Collections: | Computing Science and Mathematics Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
remotesensing-13-03054.pdf | Fulltext - Published Version | 17.71 MB | Adobe PDF | View/Open |
This item is protected by original copyright |
A file in this item is licensed under a Creative Commons License
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.