Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/33140
Appears in Collections: | Aquaculture Journal Articles |
Peer Review Status: | Refereed |
Title: | Comparative transcriptomic analysis reveals the molecular mechanisms related to oxytetracycline- resistance in strains of Aeromonas hydrophila |
Author(s): | Yu, Jing Ramanathan, Srinivasan Chen, Liangchuan Zeng, Fuyuan Li, Xiaoyan Zhao, Yiyang Lin, Ling Monaghan, Sean J Lin, Xiangmin Pang, Huanying |
Keywords: | Aeromonas hydrophila Antibiotic resistance Efflux pump system Mannitol metabolism Oxytetracycline RNA-seq Sulfur metabolism |
Issue Date: | Nov-2021 |
Date Deposited: | 24-Aug-2021 |
Citation: | Yu J, Ramanathan S, Chen L, Zeng F, Li X, Zhao Y, Lin L, Monaghan SJ, Lin X & Pang H (2021) Comparative transcriptomic analysis reveals the molecular mechanisms related to oxytetracycline- resistance in strains of Aeromonas hydrophila. Aquaculture Reports, 21, Art. No.: 100812. https://doi.org/10.1016/j.aqrep.2021.100812 |
Abstract: | Antibiotic resistance among aquatic bacterial pathogens has become a serious concern in aquaculture environments, which has increased research interest to develop solutions to overcome this problem. Moreover, the activities of several Aeromonas hydrophila gene pathways have remained elusive concerning antibiotic resistance evolution. Therefore, in this study, we have performed a transcriptomic analysis to compare differentially expressed genes between oxytetracycline (OXY) susceptible and resistant strains of A. hydrophila. Compared to the A. hydrophila susceptible strain, a total of 22 and 185 genes were differentially expressed in the 4-fold minimal inhibitory concentration (MIC) and 8-fold MIC resistant strains, respectively. Furthermore, the bioinformatics analysis revealed that the sulfur metabolism-related genes were down-regulated. The genes responsible for mannitol metabolism and the efflux pump system were up-regulated in resistant strains, compared to the susceptible strain. Therefore, it suggests that these three pathways may be involved in the OXY resistance evolution in A. hydrophila. The outcome of the transcriptomic data was further validated through quantitative reverse transcription-PCR (qRT-PCR) and Western blot analysis. Overall, the obtained data provides a deeper insight into the intrinsic molecular mechanism of OXY resistance evolution in A. hydrophila. |
DOI Link: | 10.1016/j.aqrep.2021.100812 |
Rights: | This is an open access article distributed under the terms of the Creative Commons CC-BY license (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. You are not required to obtain permission to reuse this article. |
Licence URL(s): | http://creativecommons.org/licenses/by/4.0/ |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1-s2.0-S2352513421002283-main.pdf | Fulltext - Published Version | 3.1 MB | Adobe PDF | View/Open |
This item is protected by original copyright |
A file in this item is licensed under a Creative Commons License
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.