Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/33133
Appears in Collections:Biological and Environmental Sciences Journal Articles
Peer Review Status: Refereed
Title: Unraveling the molecular effects of oxybenzone on the proteome of an environmentally relevant marine bacterium
Author(s): Lozano, Clément
Lee, Charlotte
Wattiez, Ruddy
Lebaron, Philippe
Matallana-Surget, Sabine
Contact Email: sabine.matallanasurget@stir.ac.uk
Keywords: Environmental Engineering
Waste Management and Disposal
Pollution
Environmental Chemistry
Issue Date: Nov-2021
Date Deposited: 23-Aug-2021
Citation: Lozano C, Lee C, Wattiez R, Lebaron P & Matallana-Surget S (2021) Unraveling the molecular effects of oxybenzone on the proteome of an environmentally relevant marine bacterium. Science of The Total Environment, 793, p. 148431. https://doi.org/10.1016/j.scitotenv.2021.148431
Abstract: The use of Benzophenone-3 (BP3), also known as oxybenzone, a common UV filter, is a growing environmental concern in regard to its toxicity on aquatic organisms. Our previous work stressed that BP3 is toxic to Epibacterium mobile, an environmentally relevant marine α-proteobacterium. In this study, we implemented a label-free quantitative proteomics workflow to decipher the effects of BP3 on the E. mobile proteome. Furthermore, the effect of DMSO, one of the most common solvents used to vehicle low concentrations of lipophilic chemicals, was assessed to emphasize the importance of limiting solvent concentration in ecotoxicological studies. Data-independent analysis proteomics highlighted that BP3 induced changes in the regulation of 56 proteins involved in xenobiotic export, detoxification, oxidative stress response, motility, and fatty acid, iron and amino acid metabolisms. Our results also outlined that the use of DMSO at 0.046% caused regulation changes in proteins related to transport, iron uptake and metabolism, and housekeeping functions, underlining the need to reduce the concentration of solvents in ecotoxicological studies.
DOI Link: 10.1016/j.scitotenv.2021.148431
Rights: This item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. Accepted refereed manuscript of: Lozano C, Lee C, Wattiez R, Lebaron P & Matallana-Surget S (2021) Unraveling the molecular effects of oxybenzone on the proteome of an environmentally relevant marine bacterium. Science of The Total Environment, 793, p. 148431. https://doi.org/10.1016/j.scitotenv.2021.148431 © 2021, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/
Licence URL(s): http://creativecommons.org/licenses/by-nc-nd/4.0/

Files in This Item:
File Description SizeFormat 
Paper Proteomic_STOTEN_Lozano.pdfFulltext - Accepted Version305.46 kBAdobe PDFView/Open



This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.