Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/33050
Appears in Collections:Biological and Environmental Sciences Journal Articles
Peer Review Status: Refereed
Title: Habitat heterogeneity enables spatial and temporal coexistence of native and invasive macrophytes in shallow lake landscapes
Author(s): Salgado, Jorge
Sayer, Carl D
Willby, Nigel
Baker, Ambroise G
Goldsmith, Ben
McGowan, Suzanne
Davidson, Thomas A
Bexell, Patrik
Patmore, Ian R
Okamura, Beth
Keywords: boosted regression trees
connectivity
Elodea canadensis (Michx.)
eutrophication
metacommunities
paleolimnology
Issue Date: 15-Jul-2021
Date Deposited: 9-Aug-2021
Citation: Salgado J, Sayer CD, Willby N, Baker AG, Goldsmith B, McGowan S, Davidson TA, Bexell P, Patmore IR & Okamura B (2021) Habitat heterogeneity enables spatial and temporal coexistence of native and invasive macrophytes in shallow lake landscapes. River Research and Applications. https://doi.org/10.1002/rra.3839
Abstract: Macrophyte invasive alien species (IAS) fitness is often hypothesised to be associated with beneficial environmental conditions (environmental matching) or species-poor communities. However, positive correlations between macrophyte IAS abundance and native plant richness can also arise, due to habitat heterogeneity (defined here as variation in abiotic and native biotic conditions over space and time). We analysed survey and palaeoecological data for macrophytes in satellite lakes along the Upper Lough Erne (ULE) system (Northern Ireland, UK), covering a gradient of eutrophication and connectivity to partition how environmental conditions, macrophyte diversity and habitat heterogeneity explained the abundance of Elodea canadensis, a widely distributed non-native macrophyte in Europe. E. canadensis abundance positively correlated with macrophyte richness at both the within- and between-lake scales indicating coexistence of native and invasive species over time. E. canadensis was also more prolific in highly connected and macrophyte-rich lakes, but sparser in the more eutrophic-isolated ones. Partial boosted regression trees revealed that in eutrophic-isolated lakes, E. canadensis abundances correlated with water clarity (negatively), plant diversity (positively), and plant cover (negatively) whereas in diverse-connected lakes, beta diversity (both positively and negatively) related to most greatly E. canadensis abundance. Dense macrophyte cover and unfavourable environmental conditions thus appear to confer invasibility resistance and sufficient habitat heterogeneity to mask any single effect of native biodiversity or environmental matching in controlling E. canadensis abundance. Therefore, in shallow lake landscapes, habitat heterogeneity variously enables the coexistence of native macrophytes and E. canadensis, reducing the often-described homogenisation effects of invasive macrophytes.
DOI Link: 10.1002/rra.3839
Rights: © 2021 The Authors. River Research and Applications published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Notes: Output Status: Forthcoming/Available Online
Licence URL(s): http://creativecommons.org/licenses/by/4.0/

Files in This Item:
File Description SizeFormat 
rra.3839.pdfFulltext - Published Version2.44 MBAdobe PDFView/Open



This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.