Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/33025
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCleghorn, Christopher Wen_UK
dc.contributor.authorOchoa, Gabrielaen_UK
dc.contributor.editorChicano, Franciscoen_UK
dc.date.accessioned2021-08-05T00:02:13Z-
dc.date.available2021-08-05T00:02:13Z-
dc.date.issued2021-07en_UK
dc.identifier.urihttp://hdl.handle.net/1893/33025-
dc.description.abstractA major challenge with utilizing a metaheuristic is finding optimal or near optimal parameters for a given problem instance. It is well known that the best performing control parameters are often problem dependent, with poorly chosen parameters even leading to algorithm failure. What is not obvious is how strongly the complexity of the parameter landscape itself is coupled with the underlying objective function the metaheuristic is attempting to solve. In this paper local optima networks (LONs) are utilized to visualize and analyze the parameter landscapes of particle swarm optimization (PSO) over an array of objective functions. It was found that the structure of the parameter landscape is affected by the underlying objective function, and in some cases by a considerable degree across multiple metrics. Furthermore, despite PSO's parameter landscape having a relatively simple macro structure, the LONs demonstrate that there is actually a considerable amount of complexity at a micro level; making parameter tuning harder for PSO than would have been initially thought. Apart from the PSO specific findings this paper also provides a formalism of parameter landscapes and demonstrates that LONs can be used as an effective tool in the analysis and visualization of parameter landscapes of metaheuristics.en_UK
dc.language.isoenen_UK
dc.publisherACMen_UK
dc.relationCleghorn CW & Ochoa G (2021) Understanding parameter spaces using local optima networks: a case study on particle swarm optimization. In: Chicano F (ed.) GECCO '21: Proceedings of the Genetic and Evolutionary Computation Conference Companion. GECCO '21: Genetic and Evolutionary Computation Conference, Lille, France, 10.07.2021-14.07.2021. New York: ACM, pp. 1657-1664. https://doi.org/10.1145/3449726.3463145en_UK
dc.rights© ACM, 2021. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in GECCO ’21, July 10–14, 2021, Lille, France 2021. ACM ISBN 978-1-4503-8350-9/21/07. https://doi.org/10.1145/3449639.3459288en_UK
dc.subjectLocal Optima Networksen_UK
dc.subjectParticle Swarm Optimizationen_UK
dc.subjectParameter Tuningen_UK
dc.subjectFitness landscape analysisen_UK
dc.titleUnderstanding parameter spaces using local optima networks: a case study on particle swarm optimizationen_UK
dc.typeConference Paperen_UK
dc.identifier.doi10.1145/3449726.3463145en_UK
dc.citation.spage1657en_UK
dc.citation.epage1664en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.citation.btitleGECCO '21: Proceedings of the Genetic and Evolutionary Computation Conference Companionen_UK
dc.citation.conferencedates2021-07-10 - 2021-07-14en_UK
dc.citation.conferencelocationLille, Franceen_UK
dc.citation.conferencenameGECCO '21: Genetic and Evolutionary Computation Conferenceen_UK
dc.citation.date26/06/2021en_UK
dc.citation.isbn978-1-4503-8351-6en_UK
dc.publisher.addressNew Yorken_UK
dc.contributor.affiliationUniversity of the Witwatersranden_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.scopusid2-s2.0-85111072791en_UK
dc.identifier.wtid1745731en_UK
dc.contributor.orcid0000-0001-7649-5669en_UK
dc.date.accepted2021-04-26en_UK
dcterms.dateAccepted2021-04-26en_UK
dc.date.filedepositdate2021-08-04en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionAMen_UK
local.rioxx.authorCleghorn, Christopher W|en_UK
local.rioxx.authorOchoa, Gabriela|0000-0001-7649-5669en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.contributorChicano, Francisco|en_UK
local.rioxx.freetoreaddate2021-08-04en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2021-08-04|en_UK
local.rioxx.filenameLONs_PSO_parameters_GECCO2021.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source978-1-4503-8351-6en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
LONs_PSO_parameters_GECCO2021.pdfFulltext - Accepted Version2.79 MBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.