Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/33010
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Zamboni, Pedro | en_UK |
dc.contributor.author | Marcato Junior, José | en_UK |
dc.contributor.author | de Andrade Silva, Jonathan | en_UK |
dc.contributor.author | Miyoshi, Gabriela Takahashi | en_UK |
dc.contributor.author | Matsubara, Edson Takashi | en_UK |
dc.contributor.author | Nogueira, Keiller | en_UK |
dc.contributor.author | Gonçalves, Wesley Nunes | en_UK |
dc.date.accessioned | 2021-07-30T00:04:43Z | - |
dc.date.available | 2021-07-30T00:04:43Z | - |
dc.date.issued | 2021-07 | en_UK |
dc.identifier.other | 2482 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/33010 | - |
dc.description.abstract | rban forests contribute to maintaining livability and increase the resilience of cities in the face of population growth and climate change. Information about the geographical distribution of individual trees is essential for the proper management of these systems. RGB high-resolution aerial images have emerged as a cheap and efficient source of data, although detecting and mapping single trees in an urban environment is a challenging task. Thus, we propose the evaluation of novel methods for single tree crown detection, as most of these methods have not been investigated in remote sensing applications. A total of 21 methods were investigated, including anchor-based (one and two-stage) and anchor-free state-of-the-art deep-learning methods. We used two orthoimages divided into 220 non-overlapping patches of 512 × 512 pixels with a ground sample distance (GSD) of 10 cm. The orthoimages were manually annotated, and 3382 single tree crowns were identified as the ground-truth. Our findings show that the anchor-free detectors achieved the best average performance with an AP50 of 0.686. We observed that the two-stage anchor-based and anchor-free methods showed better performance for this task, emphasizing the FSAF, Double Heads, CARAFE, ATSS, and FoveaBox models. RetinaNet, which is currently commonly applied in remote sensing, did not show satisfactory performance, and Faster R-CNN had lower results than the best methods but with no statistically significant difference. Our findings contribute to a better understanding of the performance of novel deep-learning methods in remote sensing applications and could be used as an indicator of the most suitable methods in such applications. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | MDPI AG | en_UK |
dc.relation | Zamboni P, Marcato Junior J, de Andrade Silva J, Miyoshi GT, Matsubara ET, Nogueira K & Gonçalves WN (2021) Benchmarking Anchor-Based and Anchor-Free State-of-the-Art Deep Learning Methods for Individual Tree Detection in RGB High-Resolution Images. Remote Sensing, 13 (13), Art. No.: 2482. https://doi.org/10.3390/rs13132482 | en_UK |
dc.rights | © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). | en_UK |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en_UK |
dc.subject | object detection | en_UK |
dc.subject | convolutional neural network | en_UK |
dc.subject | remote sensing | en_UK |
dc.title | Benchmarking Anchor-Based and Anchor-Free State-of-the-Art Deep Learning Methods for Individual Tree Detection in RGB High-Resolution Images | en_UK |
dc.type | Journal Article | en_UK |
dc.identifier.doi | 10.3390/rs13132482 | en_UK |
dc.citation.jtitle | Remote Sensing | en_UK |
dc.citation.issn | 2072-4292 | en_UK |
dc.citation.volume | 13 | en_UK |
dc.citation.issue | 13 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.citation.peerreviewed | Refereed | en_UK |
dc.type.status | VoR - Version of Record | en_UK |
dc.contributor.funder | Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul | en_UK |
dc.contributor.funder | Brazilian National Research Council | en_UK |
dc.contributor.funder | Conselho Nacional de Desenvolvimento Científico e Tecnológico | en_UK |
dc.contributor.funder | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior | en_UK |
dc.contributor.funder | Conselho Nacional de Desenvolvimento Científico e Tecnológico | en_UK |
dc.citation.date | 25/06/2021 | en_UK |
dc.contributor.affiliation | Federal University of Mato Grosso do Sul | en_UK |
dc.contributor.affiliation | Federal University of Mato Grosso do Sul | en_UK |
dc.contributor.affiliation | Federal University of Mato Grosso do Sul | en_UK |
dc.contributor.affiliation | Sao Paulo State University (Universidade Estadual Paulista) | en_UK |
dc.contributor.affiliation | Federal University of Mato Grosso do Sul | en_UK |
dc.contributor.affiliation | Computing Science | en_UK |
dc.contributor.affiliation | Federal University of Mato Grosso do Sul | en_UK |
dc.identifier.isi | WOS:000671127300001 | en_UK |
dc.identifier.scopusid | 2-s2.0-85109397264 | en_UK |
dc.identifier.wtid | 1744346 | en_UK |
dc.contributor.orcid | 0000-0001-5741-3621 | en_UK |
dc.contributor.orcid | 0000-0002-9096-6866 | en_UK |
dc.contributor.orcid | 0000-0002-8571-1383 | en_UK |
dc.contributor.orcid | 0000-0002-4471-0886 | en_UK |
dc.contributor.orcid | 0000-0003-3308-6384 | en_UK |
dc.contributor.orcid | 0000-0002-8815-6653 | en_UK |
dc.date.accepted | 2021-06-15 | en_UK |
dcterms.dateAccepted | 2021-06-15 | en_UK |
dc.date.filedepositdate | 2021-07-29 | en_UK |
rioxxterms.apc | not required | en_UK |
rioxxterms.type | Journal Article/Review | en_UK |
rioxxterms.version | VoR | en_UK |
local.rioxx.author | Zamboni, Pedro|0000-0001-5741-3621 | en_UK |
local.rioxx.author | Marcato Junior, José|0000-0002-9096-6866 | en_UK |
local.rioxx.author | de Andrade Silva, Jonathan| | en_UK |
local.rioxx.author | Miyoshi, Gabriela Takahashi|0000-0002-8571-1383 | en_UK |
local.rioxx.author | Matsubara, Edson Takashi|0000-0002-4471-0886 | en_UK |
local.rioxx.author | Nogueira, Keiller|0000-0003-3308-6384 | en_UK |
local.rioxx.author | Gonçalves, Wesley Nunes|0000-0002-8815-6653 | en_UK |
local.rioxx.project | Project ID unknown|Brazilian National Research Council| | en_UK |
local.rioxx.freetoreaddate | 2021-07-29 | en_UK |
local.rioxx.licence | http://creativecommons.org/licenses/by/4.0/|2021-07-29| | en_UK |
local.rioxx.filename | remotesensing-13-02482.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 2072-4292 | en_UK |
Appears in Collections: | Computing Science and Mathematics Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
remotesensing-13-02482.pdf | Fulltext - Published Version | 36.08 MB | Adobe PDF | View/Open |
This item is protected by original copyright |
A file in this item is licensed under a Creative Commons License
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.