Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/33001
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGoutcher, Rossen_UK
dc.contributor.authorBarrington, Christianen_UK
dc.contributor.authorHibbard, Paul Ben_UK
dc.contributor.authorGraham, Bruceen_UK
dc.date.accessioned2021-07-29T00:01:11Z-
dc.date.available2021-07-29T00:01:11Z-
dc.date.issued2021-07en_UK
dc.identifier.other13en_UK
dc.identifier.urihttp://hdl.handle.net/1893/33001-
dc.description.abstractThe application of deep learning techniques has led to substantial progress in solving a number of critical problems in machine vision, including fundamental problems of scene segmentation and depth estimation. Here, we report a novel deep neural network model, capable of simultaneous scene segmentation and depth estimation from a pair of binocular images. By manipulating the arrangement of binocular image pairs, presenting the model with standard left-right image pairs, identical image pairs or swapped left-right images, we show that performance levels depend on the presence of appropriate binocular image arrangements. Segmentation and depth estimation performance are both impaired when images are swapped. Segmentation performance levels are maintained, however, for identical image pairs, despite the absence of binocular disparity information. Critically, these performance levels exceed those found for an equivalent, monocularly trained, segmentation model. These results provide evidence that binocular image differences support both the direct recovery of depth and segmentation information, and the enhanced learning of monocular segmentation signals. This finding suggests that binocular vision may play an important role in visual development. Better understanding of this role may hold implications for the study and treatment of developmentally acquired perceptual impairments.en_UK
dc.language.isoenen_UK
dc.publisherAssociation for Research in Vision and Ophthalmologyen_UK
dc.relationGoutcher R, Barrington C, Hibbard PB & Graham B (2021) Binocular vision supports the development of scene segmentation capabilities: Evidence from a deep learning model. Journal of Vision, 21 (7), Art. No.: 13. https://doi.org/10.1167/jov.21.7.13en_UK
dc.rightsCopyright 2021 The Authors This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectdeep learningen_UK
dc.subjectbinocular visionen_UK
dc.subjectsegmentationen_UK
dc.subjectdepth perceptionen_UK
dc.titleBinocular vision supports the development of scene segmentation capabilities: Evidence from a deep learning modelen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1167/jov.21.7.13en_UK
dc.identifier.pmid34289490en_UK
dc.citation.jtitleJournal of Visionen_UK
dc.citation.issn1534-7362en_UK
dc.citation.volume21en_UK
dc.citation.issue7en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderMoD Ministry of Defence (MoD)en_UK
dc.citation.date21/07/2021en_UK
dc.contributor.affiliationPsychologyen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationUniversity of Essexen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.isiWOS:000685200600004en_UK
dc.identifier.scopusid2-s2.0-85112549015en_UK
dc.identifier.wtid1744251en_UK
dc.contributor.orcid0000-0002-0471-8373en_UK
dc.contributor.orcid0000-0002-3243-2532en_UK
dc.date.accepted2021-06-23en_UK
dcterms.dateAccepted2021-06-23en_UK
dc.date.filedepositdate2021-07-28en_UK
dc.relation.funderprojectDeep Learning for Depth-Based Image Segmentationen_UK
dc.relation.funderrefDSTLX1000148113en_UK
rioxxterms.apcpaiden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorGoutcher, Ross|0000-0002-0471-8373en_UK
local.rioxx.authorBarrington, Christian|en_UK
local.rioxx.authorHibbard, Paul B|en_UK
local.rioxx.authorGraham, Bruce|0000-0002-3243-2532en_UK
local.rioxx.projectDSTLX1000148113|Ministry of Defence (MoD)|en_UK
local.rioxx.freetoreaddate2021-07-28en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2021-07-28|en_UK
local.rioxx.filenamei1534-7362-21-7-13_1626855206.18985.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1534-7362en_UK
Appears in Collections:Psychology Journal Articles

Files in This Item:
File Description SizeFormat 
i1534-7362-21-7-13_1626855206.18985.pdfFulltext - Published Version1.46 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.