Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/33001
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Goutcher, Ross | en_UK |
dc.contributor.author | Barrington, Christian | en_UK |
dc.contributor.author | Hibbard, Paul B | en_UK |
dc.contributor.author | Graham, Bruce | en_UK |
dc.date.accessioned | 2021-07-29T00:01:11Z | - |
dc.date.available | 2021-07-29T00:01:11Z | - |
dc.date.issued | 2021-07 | en_UK |
dc.identifier.other | 13 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/33001 | - |
dc.description.abstract | The application of deep learning techniques has led to substantial progress in solving a number of critical problems in machine vision, including fundamental problems of scene segmentation and depth estimation. Here, we report a novel deep neural network model, capable of simultaneous scene segmentation and depth estimation from a pair of binocular images. By manipulating the arrangement of binocular image pairs, presenting the model with standard left-right image pairs, identical image pairs or swapped left-right images, we show that performance levels depend on the presence of appropriate binocular image arrangements. Segmentation and depth estimation performance are both impaired when images are swapped. Segmentation performance levels are maintained, however, for identical image pairs, despite the absence of binocular disparity information. Critically, these performance levels exceed those found for an equivalent, monocularly trained, segmentation model. These results provide evidence that binocular image differences support both the direct recovery of depth and segmentation information, and the enhanced learning of monocular segmentation signals. This finding suggests that binocular vision may play an important role in visual development. Better understanding of this role may hold implications for the study and treatment of developmentally acquired perceptual impairments. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | Association for Research in Vision and Ophthalmology | en_UK |
dc.relation | Goutcher R, Barrington C, Hibbard PB & Graham B (2021) Binocular vision supports the development of scene segmentation capabilities: Evidence from a deep learning model. Journal of Vision, 21 (7), Art. No.: 13. https://doi.org/10.1167/jov.21.7.13 | en_UK |
dc.rights | Copyright 2021 The Authors This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/). | en_UK |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en_UK |
dc.subject | deep learning | en_UK |
dc.subject | binocular vision | en_UK |
dc.subject | segmentation | en_UK |
dc.subject | depth perception | en_UK |
dc.title | Binocular vision supports the development of scene segmentation capabilities: Evidence from a deep learning model | en_UK |
dc.type | Journal Article | en_UK |
dc.identifier.doi | 10.1167/jov.21.7.13 | en_UK |
dc.identifier.pmid | 34289490 | en_UK |
dc.citation.jtitle | Journal of Vision | en_UK |
dc.citation.issn | 1534-7362 | en_UK |
dc.citation.volume | 21 | en_UK |
dc.citation.issue | 7 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.citation.peerreviewed | Refereed | en_UK |
dc.type.status | VoR - Version of Record | en_UK |
dc.contributor.funder | MoD Ministry of Defence (MoD) | en_UK |
dc.citation.date | 21/07/2021 | en_UK |
dc.contributor.affiliation | Psychology | en_UK |
dc.contributor.affiliation | Computing Science | en_UK |
dc.contributor.affiliation | University of Essex | en_UK |
dc.contributor.affiliation | Computing Science | en_UK |
dc.identifier.isi | WOS:000685200600004 | en_UK |
dc.identifier.scopusid | 2-s2.0-85112549015 | en_UK |
dc.identifier.wtid | 1744251 | en_UK |
dc.contributor.orcid | 0000-0002-0471-8373 | en_UK |
dc.contributor.orcid | 0000-0002-3243-2532 | en_UK |
dc.date.accepted | 2021-06-23 | en_UK |
dcterms.dateAccepted | 2021-06-23 | en_UK |
dc.date.filedepositdate | 2021-07-28 | en_UK |
dc.relation.funderproject | Deep Learning for Depth-Based Image Segmentation | en_UK |
dc.relation.funderref | DSTLX1000148113 | en_UK |
rioxxterms.apc | paid | en_UK |
rioxxterms.type | Journal Article/Review | en_UK |
rioxxterms.version | VoR | en_UK |
local.rioxx.author | Goutcher, Ross|0000-0002-0471-8373 | en_UK |
local.rioxx.author | Barrington, Christian| | en_UK |
local.rioxx.author | Hibbard, Paul B| | en_UK |
local.rioxx.author | Graham, Bruce|0000-0002-3243-2532 | en_UK |
local.rioxx.project | DSTLX1000148113|Ministry of Defence (MoD)| | en_UK |
local.rioxx.freetoreaddate | 2021-07-28 | en_UK |
local.rioxx.licence | http://creativecommons.org/licenses/by/4.0/|2021-07-28| | en_UK |
local.rioxx.filename | i1534-7362-21-7-13_1626855206.18985.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 1534-7362 | en_UK |
Appears in Collections: | Psychology Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
i1534-7362-21-7-13_1626855206.18985.pdf | Fulltext - Published Version | 1.46 MB | Adobe PDF | View/Open |
This item is protected by original copyright |
A file in this item is licensed under a Creative Commons License
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.