Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/32889
Appears in Collections:Biological and Environmental Sciences Journal Articles
Peer Review Status: Refereed
Title: Transmission of bee-like vibrations in buzz-pollinated plants with different stamen architectures
Author(s): Nevard, Lucy
Russell, Avery L
Foord, Karl
Vallejo-Marín, Mario
Keywords: Biomechanics
Plant physiology
Pollination
Issue Date: 2021
Date Deposited: 12-Jul-2021
Citation: Nevard L, Russell AL, Foord K & Vallejo-Marín M (2021) Transmission of bee-like vibrations in buzz-pollinated plants with different stamen architectures. Scientific Reports, 11 (1), Art. No.: 13541. https://doi.org/10.1038/s41598-021-93029-7
Abstract: In buzz-pollinated plants, bees apply thoracic vibrations to the flower, causing pollen release from anthers, often through apical pores. Bees grasp one or more anthers with their mandibles, and vibrations are transmitted to this focal anther(s), adjacent anthers, and the whole flower. Pollen release depends on anther vibration, and thus it should be affected by vibration transmission through flowers with distinct morphologies, as found among buzz-pollinated taxa. We compare vibration transmission between focal and non-focal anthers in four species with contrasting stamen architectures: Cyclamen persicum, Exacum affine, Solanum dulcamara and S. houstonii. We used a mechanical transducer to apply bee-like vibrations to focal anthers, measuring the vibration frequency and displacement amplitude at focal and non-focal anther tips simultaneously using high-speed video analysis (6000 frames per second). In flowers in which anthers are tightly arranged (C. persicum and S. dulcamara), vibrations in focal and non-focal anthers are indistinguishable in both frequency and displacement amplitude. In contrast, flowers with loosely arranged anthers (E. affine) including those with differentiated stamens (heterantherous S. houstonii), show the same frequency but higher displacement amplitude in non-focal anthers compared to focal anthers. We suggest that stamen architecture modulates vibration transmission, potentially affecting pollen release and bee behaviour.
DOI Link: 10.1038/s41598-021-93029-7
Rights: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Licence URL(s): http://creativecommons.org/licenses/by/4.0/

Files in This Item:
File Description SizeFormat 
s41598-021-93029-7.pdfFulltext - Published Version3.48 MBAdobe PDFView/Open



This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.