Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/32852
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAkbari, Vahiden_UK
dc.contributor.authorSimpson, Morganen_UK
dc.contributor.authorMaharaj, Savitrien_UK
dc.contributor.authorMarino, Armandoen_UK
dc.contributor.authorBhowmik, Deepayanen_UK
dc.contributor.authorPrabhu, G Nagendraen_UK
dc.contributor.authorRupavatharam, Srikanthen_UK
dc.contributor.authorDatta, Avirajen_UK
dc.contributor.authorKleczkowski, Adamen_UK
dc.contributor.authorSujeetha, J Alice R Pen_UK
dc.date.accessioned2021-07-06T00:06:11Z-
dc.date.available2021-07-06T00:06:11Z-
dc.date.issued2021en_UK
dc.identifier.urihttp://hdl.handle.net/1893/32852-
dc.description.abstractThe main objective of this paper to show the potential of mul-titemporal Sentinel-1 (S-1) and Sentinel-2 (S-2) for detection of water hyacinth in Indian wetlands. Water hyacinth (Pontederia crassipes, also called Eichhornia crassipes) is one of the most destructive invasive weed species in many lakes and river systems worldwide, causing significant adverse economic and ecological impacts. We use the expectation maximization (EM) as a benchmark machine learning algorithm and compare its results with three supervised machine learning classifiers, Support Vector Machine (SVM), Random Forest (RF), and k-Nearest Neighbour (kNN), using both synthetic aperture radar (SAR) and optical data to distinguish between clean and infested waters.en_UK
dc.language.isoenen_UK
dc.publisherIEEEen_UK
dc.relationAkbari V, Simpson M, Maharaj S, Marino A, Bhowmik D, Prabhu GN, Rupavatharam S, Datta A, Kleczkowski A & Sujeetha JARP (2021) Monitoring Aquatic Weeds In Indian Wetlands Using Multitemporal Remote Sensing Data With Machine Learning Techniques. In: 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. International Geoscience and Remote Sensing Symposium (IGARSS), Belgium, 12.07.2021-16.07.2021. Piscataway, NJ, USA: IEEE. https://doi.org/10.1109/IGARSS47720.2021.9553207en_UK
dc.rights© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_UK
dc.subjectRemote sensingen_UK
dc.subjectmultitemporal image analysisen_UK
dc.subjectSentinel-1en_UK
dc.subjectSentinel-2en_UK
dc.subjectwater hyacinthen_UK
dc.subjectEichhornia crassipesen_UK
dc.subjectwetlanden_UK
dc.subjectmachine learningen_UK
dc.titleMonitoring Aquatic Weeds In Indian Wetlands Using Multitemporal Remote Sensing Data With Machine Learning Techniquesen_UK
dc.typeConference Paperen_UK
dc.identifier.doi10.1109/IGARSS47720.2021.9553207en_UK
dc.citation.issn2153-7003en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.contributor.funderRoyal Academy of Engineeringen_UK
dc.author.emaildeepayan.bhowmik@stir.ac.uken_UK
dc.citation.btitle2021 IEEE International Geoscience and Remote Sensing Symposium IGARSSen_UK
dc.citation.conferencedates2021-07-12 - 2021-07-16en_UK
dc.citation.conferencelocationBelgiumen_UK
dc.citation.conferencenameInternational Geoscience and Remote Sensing Symposium (IGARSS)en_UK
dc.citation.date12/10/2021en_UK
dc.citation.isbn978-1-6654-0369-6en_UK
dc.publisher.addressPiscataway, NJ, USAen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationSanatana Dharma Collegeen_UK
dc.contributor.affiliationInternational Crops Research Institute for the Semi-Arid Tropicsen_UK
dc.contributor.affiliationInternational Crops Research Institute for the Semi-Arid Tropicsen_UK
dc.contributor.affiliationUniversity of Strathclydeen_UK
dc.contributor.affiliationNational Institute of Plant Health Management (India)en_UK
dc.identifier.wtid1739816en_UK
dc.contributor.orcid0000-0002-9621-8180en_UK
dc.contributor.orcid0000-0003-3004-4517en_UK
dc.contributor.orcid0000-0002-0674-6044en_UK
dc.contributor.orcid0000-0002-4531-3102en_UK
dc.contributor.orcid0000-0003-1762-1578en_UK
dc.date.accepted2021-03-16en_UK
dcterms.dateAccepted2021-03-16en_UK
dc.date.filedepositdate2021-07-03en_UK
dc.relation.funderprojectMultimodal data analysis for monitoring invasive aquatic weeds in Indiaen_UK
dc.relation.funderrefFF\1920\1\37en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionAMen_UK
local.rioxx.authorAkbari, Vahid|0000-0002-9621-8180en_UK
local.rioxx.authorSimpson, Morgan|0000-0003-3004-4517en_UK
local.rioxx.authorMaharaj, Savitri|0000-0002-0674-6044en_UK
local.rioxx.authorMarino, Armando|0000-0002-4531-3102en_UK
local.rioxx.authorBhowmik, Deepayan|0000-0003-1762-1578en_UK
local.rioxx.authorPrabhu, G Nagendra|en_UK
local.rioxx.authorRupavatharam, Srikanth|en_UK
local.rioxx.authorDatta, Aviraj|en_UK
local.rioxx.authorKleczkowski, Adam|en_UK
local.rioxx.authorSujeetha, J Alice R P|en_UK
local.rioxx.projectFF\1920\1\37|Royal Academy of Engineering|http://dx.doi.org/10.13039/501100000287en_UK
local.rioxx.freetoreaddate2021-07-05en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2021-07-05|en_UK
local.rioxx.filenameMonitoring_Aquatic_Weeds-2021.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source978-1-6654-0369-6en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
Monitoring_Aquatic_Weeds-2021.pdfFulltext - Accepted Version9.5 MBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.