Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/32734
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDashtipour, Kiaen_UK
dc.contributor.authorGogate, Mandaren_UK
dc.contributor.authorGelbukh, Alexanderen_UK
dc.contributor.authorHussain, Amiren_UK
dc.date.accessioned2021-06-22T00:29:30Z-
dc.date.available2021-06-22T00:29:30Z-
dc.identifier.urihttp://hdl.handle.net/1893/32734-
dc.description.abstractSentiment analysis is used to analyses people’s opinions, views and emotions towards different entities such as products, organizations, companies and events. People’s opinions are important for most others during their decision-making process. For example, if someone wants to buy a product, they might want to know more about that product and the experiences of others with that product. Sentiment analysis is able to classify the reviews based on their polarity; even if reviews are expressed in a sentence or document, sentiment analysis is used to classify it into positive, negative or neutral reviews. In this paper, we proposed a framework using TF-IDF and transition point to detect polarity in Persian movie reviews. The proposed approach has been evaluated using different classifiers such as SVM, Naive Bayes, MLP and CNN. The experimental results show the transition point is more effective in comparison with traditional feature such as TF-IDF.en_UK
dc.language.isoenen_UK
dc.publisherIEEEen_UK
dc.relationDashtipour K, Gogate M, Gelbukh A & Hussain A (2021) Adopting Transition Point Technique for Persian Sentiment Analysis. In: TBC. ICOTEN 2021: International Congress of Advanced Technology and Engineering, Virtual, 04.07.2021-05.07.2021. Piscataway, NJ, USA: IEEE.en_UK
dc.rights© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_UK
dc.subjectSentiment Analysisen_UK
dc.subjectPersianen_UK
dc.subjectMachine Learningen_UK
dc.titleAdopting Transition Point Technique for Persian Sentiment Analysisen_UK
dc.typeConference Paperen_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.contributor.funderEngineering and Physical Sciences Research Councilen_UK
dc.contributor.funderEPSRC Engineering and Physical Sciences Research Councilen_UK
dc.citation.btitleTBCen_UK
dc.citation.conferencedates2021-07-04 - 2021-07-05en_UK
dc.citation.conferencelocationVirtualen_UK
dc.citation.conferencenameICOTEN 2021: International Congress of Advanced Technology and Engineeringen_UK
dc.publisher.addressPiscataway, NJ, USAen_UK
dc.description.notesOutput Status: Forthcomingen_UK
dc.contributor.affiliationEdinburgh Napier Universityen_UK
dc.contributor.affiliationEdinburgh Napier Universityen_UK
dc.contributor.affiliationInstituto Politécnico Nacionalen_UK
dc.contributor.affiliationEdinburgh Napier Universityen_UK
dc.identifier.wtid1736906en_UK
dc.contributor.orcid0000-0001-8651-5117en_UK
dc.contributor.orcid0000-0003-1712-9014en_UK
dc.date.accepted2021-05-15en_UK
dcterms.dateAccepted2021-05-15en_UK
dc.date.filedepositdate2021-06-21en_UK
dc.relation.funderprojectTowards visually-driven speech enhancement for cognitively-inspired multi-modal hearing-aid devicesen_UK
dc.relation.funderrefEP/M026981/1en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionAMen_UK
local.rioxx.authorDashtipour, Kia|0000-0001-8651-5117en_UK
local.rioxx.authorGogate, Mandar|0000-0003-1712-9014en_UK
local.rioxx.authorGelbukh, Alexander|en_UK
local.rioxx.authorHussain, Amir|en_UK
local.rioxx.projectEP/M026981/1|Engineering and Physical Sciences Research Council|http://dx.doi.org/10.13039/501100000266en_UK
local.rioxx.freetoreaddate2021-06-21en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2021-06-21|en_UK
local.rioxx.filenameTransition_Point.pdfen_UK
local.rioxx.filecount1en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
Transition_Point.pdfFulltext - Accepted Version157.07 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.