Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/32694
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Dashtipour, Kia | en_UK |
dc.contributor.author | Gogate, Mandar | en_UK |
dc.contributor.author | Adeel, Ahsan | en_UK |
dc.contributor.author | Larijani, Hadi | en_UK |
dc.contributor.author | Hussain, Amir | en_UK |
dc.date.accessioned | 2021-06-11T13:36:54Z | - |
dc.date.available | 2021-06-11T13:36:54Z | - |
dc.date.issued | 2021-05 | en_UK |
dc.identifier.other | 596 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/32694 | - |
dc.description.abstract | Sentiment analysis aims to automatically classify the subject’s sentiment (e.g., positive, negative, or neutral) towards a particular aspect such as a topic, product, movie, news, etc. Deep learning has recently emerged as a powerful machine learning technique to tackle the growing demand for accurate sentiment analysis. However, the majority of research efforts are devoted to English-language only, while information of great importance is also available in other languages. This paper presents a novel, context-aware, deep-learning-driven, Persian sentiment analysis approach. Specifically, the proposed deep-learning-driven automated feature-engineering approach classifies Persian movie reviews as having positive or negative sentiments. Two deep learning algorithms, convolutional neural networks (CNN) and long-short-term memory (LSTM), are applied and compared with our previously proposed manual-feature-engineering-driven, SVM-based approach. Simulation results demonstrate that LSTM obtained a better performance as compared to multilayer perceptron (MLP), autoencoder, support vector machine (SVM), logistic regression and CNN algorithms. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | MDPI | en_UK |
dc.relation | Dashtipour K, Gogate M, Adeel A, Larijani H & Hussain A (2021) Sentiment analysis of persian movie reviews using deep learning. Entropy, 23 (5), Art. No.: 596. https://doi.org/10.3390/e23050596 | en_UK |
dc.rights | © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). | en_UK |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en_UK |
dc.subject | sentiment analysis | en_UK |
dc.subject | deep learning | en_UK |
dc.subject | CNN | en_UK |
dc.subject | LSTM | en_UK |
dc.subject | classification | en_UK |
dc.title | Sentiment analysis of persian movie reviews using deep learning | en_UK |
dc.type | Journal Article | en_UK |
dc.identifier.doi | 10.3390/e23050596 | en_UK |
dc.identifier.pmid | 34066133 | en_UK |
dc.citation.jtitle | Entropy | en_UK |
dc.citation.issn | 1099-4300 | en_UK |
dc.citation.volume | 23 | en_UK |
dc.citation.issue | 5 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.citation.peerreviewed | Refereed | en_UK |
dc.type.status | VoR - Version of Record | en_UK |
dc.contributor.funder | Engineering and Physical Sciences Research Council | en_UK |
dc.citation.date | 12/05/2021 | en_UK |
dc.contributor.affiliation | Computing Science | en_UK |
dc.contributor.affiliation | Edinburgh Napier University | en_UK |
dc.contributor.affiliation | University of Wolverhampton | en_UK |
dc.contributor.affiliation | Glasgow Caledonian University | en_UK |
dc.contributor.affiliation | Edinburgh Napier University | en_UK |
dc.identifier.scopusid | 2-s2.0-85106482773 | en_UK |
dc.identifier.wtid | 1734615 | en_UK |
dc.contributor.orcid | 0000-0001-8651-5117 | en_UK |
dc.contributor.orcid | 0000-0003-1712-9014 | en_UK |
dc.date.accepted | 2021-05-04 | en_UK |
dcterms.dateAccepted | 2021-05-04 | en_UK |
dc.date.filedepositdate | 2021-06-11 | en_UK |
rioxxterms.apc | not required | en_UK |
rioxxterms.type | Journal Article/Review | en_UK |
rioxxterms.version | VoR | en_UK |
local.rioxx.author | Dashtipour, Kia|0000-0001-8651-5117 | en_UK |
local.rioxx.author | Gogate, Mandar|0000-0003-1712-9014 | en_UK |
local.rioxx.author | Adeel, Ahsan| | en_UK |
local.rioxx.author | Larijani, Hadi| | en_UK |
local.rioxx.author | Hussain, Amir| | en_UK |
local.rioxx.project | Project ID unknown|Engineering and Physical Sciences Research Council|http://dx.doi.org/10.13039/501100000266 | en_UK |
local.rioxx.freetoreaddate | 2021-06-11 | en_UK |
local.rioxx.licence | http://creativecommons.org/licenses/by/4.0/|2021-06-11| | en_UK |
local.rioxx.filename | entropy-23-00596-v2.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 1099-4300 | en_UK |
Appears in Collections: | Computing Science and Mathematics Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
entropy-23-00596-v2.pdf | Fulltext - Published Version | 2.43 MB | Adobe PDF | View/Open |
This item is protected by original copyright |
A file in this item is licensed under a Creative Commons License
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.