Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/32694
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDashtipour, Kiaen_UK
dc.contributor.authorGogate, Mandaren_UK
dc.contributor.authorAdeel, Ahsanen_UK
dc.contributor.authorLarijani, Hadien_UK
dc.contributor.authorHussain, Amiren_UK
dc.date.accessioned2021-06-11T13:36:54Z-
dc.date.available2021-06-11T13:36:54Z-
dc.date.issued2021-05en_UK
dc.identifier.other596en_UK
dc.identifier.urihttp://hdl.handle.net/1893/32694-
dc.description.abstractSentiment analysis aims to automatically classify the subject’s sentiment (e.g., positive, negative, or neutral) towards a particular aspect such as a topic, product, movie, news, etc. Deep learning has recently emerged as a powerful machine learning technique to tackle the growing demand for accurate sentiment analysis. However, the majority of research efforts are devoted to English-language only, while information of great importance is also available in other languages. This paper presents a novel, context-aware, deep-learning-driven, Persian sentiment analysis approach. Specifically, the proposed deep-learning-driven automated feature-engineering approach classifies Persian movie reviews as having positive or negative sentiments. Two deep learning algorithms, convolutional neural networks (CNN) and long-short-term memory (LSTM), are applied and compared with our previously proposed manual-feature-engineering-driven, SVM-based approach. Simulation results demonstrate that LSTM obtained a better performance as compared to multilayer perceptron (MLP), autoencoder, support vector machine (SVM), logistic regression and CNN algorithms.en_UK
dc.language.isoenen_UK
dc.publisherMDPIen_UK
dc.relationDashtipour K, Gogate M, Adeel A, Larijani H & Hussain A (2021) Sentiment analysis of persian movie reviews using deep learning. Entropy, 23 (5), Art. No.: 596. https://doi.org/10.3390/e23050596en_UK
dc.rights© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectsentiment analysisen_UK
dc.subjectdeep learningen_UK
dc.subjectCNNen_UK
dc.subjectLSTMen_UK
dc.subjectclassificationen_UK
dc.titleSentiment analysis of persian movie reviews using deep learningen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.3390/e23050596en_UK
dc.identifier.pmid34066133en_UK
dc.citation.jtitleEntropyen_UK
dc.citation.issn1099-4300en_UK
dc.citation.volume23en_UK
dc.citation.issue5en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderEngineering and Physical Sciences Research Councilen_UK
dc.citation.date12/05/2021en_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationEdinburgh Napier Universityen_UK
dc.contributor.affiliationUniversity of Wolverhamptonen_UK
dc.contributor.affiliationGlasgow Caledonian Universityen_UK
dc.contributor.affiliationEdinburgh Napier Universityen_UK
dc.identifier.scopusid2-s2.0-85106482773en_UK
dc.identifier.wtid1734615en_UK
dc.contributor.orcid0000-0001-8651-5117en_UK
dc.contributor.orcid0000-0003-1712-9014en_UK
dc.date.accepted2021-05-04en_UK
dcterms.dateAccepted2021-05-04en_UK
dc.date.filedepositdate2021-06-11en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorDashtipour, Kia|0000-0001-8651-5117en_UK
local.rioxx.authorGogate, Mandar|0000-0003-1712-9014en_UK
local.rioxx.authorAdeel, Ahsan|en_UK
local.rioxx.authorLarijani, Hadi|en_UK
local.rioxx.authorHussain, Amir|en_UK
local.rioxx.projectProject ID unknown|Engineering and Physical Sciences Research Council|http://dx.doi.org/10.13039/501100000266en_UK
local.rioxx.freetoreaddate2021-06-11en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2021-06-11|en_UK
local.rioxx.filenameentropy-23-00596-v2.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1099-4300en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
entropy-23-00596-v2.pdfFulltext - Published Version2.43 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.