Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/32576
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCrescimanna, Vincenzoen_UK
dc.contributor.authorGraham, Bruceen_UK
dc.date.accessioned2021-05-04T03:47:48Z-
dc.date.available2021-05-04T03:47:48Z-
dc.date.issued2020en_UK
dc.identifier.urihttp://hdl.handle.net/1893/32576-
dc.description.abstractThe Variational AutoEncoder (VAE) learns simultaneously an inference and a generative model, but only one of these models can be learned at optimum, this behaviour is associated to the ELBO learning objective, that is optimised by a non-informative generator. In order to solve such an issue, we provide a learning objective, learning a maximal informative generator while maintaining bounded the network capacity: the Variational InfoMax (VIM). The contribution of the VIM derivation is twofold: an objective learning both an optimal inference and generative model and the explicit definition of the network capacity, an estimation of the network robustness.en_UK
dc.language.isoenen_UK
dc.publisherIEEEen_UK
dc.relationCrescimanna V & Graham B (2020) The Variational InfoMax AutoEncoder. In: 2020 International Joint Conference on Neural Networks. IEEE International Joint Conference on Neural Networks (IJCNN) IJCNN 2020 - International Joint Conference on Neural Networks, Glasgow, UK, 19.07.2020-24.07.2020. Piscataway, NJ: IEEE. https://doi.org/10.1109/IJCNN48605.2020.9207048en_UK
dc.relation.ispartofseriesIEEE International Joint Conference on Neural Networks (IJCNN)en_UK
dc.rights© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_UK
dc.subjectGeneratorsen_UK
dc.subjectEntropyen_UK
dc.subjectMutual informationen_UK
dc.subjectRobustnessen_UK
dc.subjectTask analysisen_UK
dc.subjectEncodingen_UK
dc.subjectData modelsen_UK
dc.titleThe Variational InfoMax AutoEncoderen_UK
dc.typeConference Paperen_UK
dc.identifier.doi10.1109/IJCNN48605.2020.9207048en_UK
dc.citation.issn2161-4407en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.citation.btitle2020 International Joint Conference on Neural Networksen_UK
dc.citation.conferencedates2020-07-19 - 2020-07-24en_UK
dc.citation.conferencelocationGlasgow, UKen_UK
dc.citation.conferencenameIJCNN 2020 - International Joint Conference on Neural Networksen_UK
dc.citation.date19/11/2020en_UK
dc.citation.isbn978-1-7281-6927-9en_UK
dc.citation.isbn978-1-7281-6926-2en_UK
dc.publisher.addressPiscataway, NJen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.isiWOS:000626021403083en_UK
dc.identifier.wtid1725114en_UK
dc.contributor.orcid0000-0002-3243-2532en_UK
dc.date.accepted2020-07-01en_UK
dcterms.dateAccepted2020-07-01en_UK
dc.date.filedepositdate2021-05-03en_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionAMen_UK
local.rioxx.authorCrescimanna, Vincenzo|en_UK
local.rioxx.authorGraham, Bruce|0000-0002-3243-2532en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2021-05-03en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2021-05-03|en_UK
local.rioxx.filenameCrescimanna-Graham-IEEE-2020.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source978-1-7281-6926-2en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
Crescimanna-Graham-IEEE-2020.pdfFulltext - Accepted Version2.63 MBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.