Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/32564
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGong, Mengyien_UK
dc.contributor.authorMiller, Claireen_UK
dc.contributor.authorScott, Marianen_UK
dc.contributor.authorO'Donnell, Ruthen_UK
dc.contributor.authorSimis, Stefanen_UK
dc.contributor.authorGroom, Steveen_UK
dc.contributor.authorTyler, Andrewen_UK
dc.contributor.authorHunter, Peteren_UK
dc.contributor.authorSpyrakos, Evangelosen_UK
dc.date.accessioned2021-04-26T04:37:08Z-
dc.date.available2021-04-26T04:37:08Z-
dc.date.issued2021-12en_UK
dc.identifier.urihttp://hdl.handle.net/1893/32564-
dc.description.abstractSatellite remote sensing can provide indicative measures of environmental variables that are crucial to understanding the environment. The spatial and temporal coverage of satellite images allows scientists to investigate the changes in environmental variables in an unprecedented scale. However, identifying spatiotemporal patterns from such images is challenging due to the complexity of the data, which can be large in volume yet sparse within individual images. This paper proposes a new approach, state space functional principal components analysis (SS-FPCA), to identify the spatiotemporal patterns in processed satellite retrievals and simultaneously reduce the dimensionality of the data, through the use of functional principal components. Furthermore our approach can be used to produce interpolations over the sparse areas. An algorithm based on the alternating expectation–conditional maximisation framework is proposed to estimate the model. The uncertainty of the estimated parameters is investigated through a parametric bootstrap procedure. Lake chlorophyll-a data hold key information on water quality status. Such information is usually only available from limited in situ sampling locations or not at all for remote inaccessible lakes. In this paper, the SS-FPCA is used to investigate the spatiotemporal patterns in chlorophyll-a data of Taruo Lake on the Tibetan Plateau, observed by the European Space Agency MEdium Resolution Imaging Spectrometer.en_UK
dc.language.isoenen_UK
dc.publisherSpringer Science and Business Media LLCen_UK
dc.relationGong M, Miller C, Scott M, O'Donnell R, Simis S, Groom S, Tyler A, Hunter P & Spyrakos E (2021) State space functional principal component analysis to identify spatiotemporal patterns in remote sensing lake water quality. Stochastic Environmental Research and Risk Assessment, 35 (12), pp. 2521-2536. https://doi.org/10.1007/s00477-021-02017-wen_UK
dc.rightsThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectFunctional principal component analysisen_UK
dc.subjectState space modelen_UK
dc.subjectAECM algorithmen_UK
dc.subjectRemote sensing imagesen_UK
dc.subjectLake chlorophyll-aen_UK
dc.titleState space functional principal component analysis to identify spatiotemporal patterns in remote sensing lake water qualityen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1007/s00477-021-02017-wen_UK
dc.citation.jtitleStochastic Environmental Research and Risk Assessmenten_UK
dc.citation.issn1436-3259en_UK
dc.citation.issn1436-3240en_UK
dc.citation.volume35en_UK
dc.citation.issue12en_UK
dc.citation.spage2521en_UK
dc.citation.epage2536en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderNERC Natural Environment Research Councilen_UK
dc.author.emailevangelos.spyrakos@stir.ac.uken_UK
dc.citation.date21/04/2021en_UK
dc.contributor.affiliationLancaster Universityen_UK
dc.contributor.affiliationUniversity of Glasgowen_UK
dc.contributor.affiliationUniversity of Glasgowen_UK
dc.contributor.affiliationUniversity of Glasgowen_UK
dc.contributor.affiliationPlymouth Marine Laboratoryen_UK
dc.contributor.affiliationPlymouth Marine Laboratoryen_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.identifier.isiWOS:000642041900001en_UK
dc.identifier.scopusid2-s2.0-85104979927en_UK
dc.identifier.wtid1723326en_UK
dc.contributor.orcid0000-0001-7655-1675en_UK
dc.contributor.orcid0000-0003-0604-5827en_UK
dc.contributor.orcid0000-0001-7269-795Xen_UK
dc.contributor.orcid0000-0003-0604-5827en_UK
dc.date.accepted2021-04-02en_UK
dcterms.dateAccepted2021-04-02en_UK
dc.date.filedepositdate2021-04-23en_UK
dc.relation.funderprojectGlobal Observatory of Lake responses to Environmental change (Globolakes)en_UK
dc.relation.funderrefNE/J024279/1en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorGong, Mengyi|en_UK
local.rioxx.authorMiller, Claire|en_UK
local.rioxx.authorScott, Marian|en_UK
local.rioxx.authorO'Donnell, Ruth|0000-0001-7655-1675en_UK
local.rioxx.authorSimis, Stefan|en_UK
local.rioxx.authorGroom, Steve|en_UK
local.rioxx.authorTyler, Andrew|0000-0003-0604-5827en_UK
local.rioxx.authorHunter, Peter|0000-0001-7269-795Xen_UK
local.rioxx.authorSpyrakos, Evangelos|0000-0003-0604-5827en_UK
local.rioxx.projectNE/J024279/1|Natural Environment Research Council|http://dx.doi.org/10.13039/501100000270en_UK
local.rioxx.freetoreaddate2021-04-23en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2021-04-23|en_UK
local.rioxx.filenameGong2021_Article_StateSpaceFunctionalPrincipalC.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1436-3259en_UK
Appears in Collections:Biological and Environmental Sciences Journal Articles

Files in This Item:
File Description SizeFormat 
Gong2021_Article_StateSpaceFunctionalPrincipalC.pdfFulltext - Published Version1.8 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.