Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/32550
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLiaqat, Sidrahen_UK
dc.contributor.authorDashtipour, Kiaen_UK
dc.contributor.authorZahid, Adnanen_UK
dc.contributor.authorArshad, Kamranen_UK
dc.contributor.authorUllah, Sanaen_UK
dc.contributor.authorAssaleh, Khaleden_UK
dc.contributor.authorRamzan, Naeemen_UK
dc.date.accessioned2021-04-22T15:52:14Z-
dc.date.available2021-04-22T15:52:14Z-
dc.date.issued2021en_UK
dc.identifier.other679502en_UK
dc.identifier.urihttp://hdl.handle.net/1893/32550-
dc.description.abstractAtrial fibrillation (AF) is one of the common types of cardiac arrhythmia with a prevalence of 1-2% in the community, increasing the risk of stroke and myocardial infarction. Early detection of AF, typically causing irregular and abnormally fast heart rate can help reduce the risk of strokes that are more common among older people. Intelligent models capable of automatic detection of AF in its earliest possible stages can improve the early diagnosis and treatment. Luckily, this can be made possible with the information about the heart’s rhythm and electrical activity provided through electrocardiogram (ECG) and the decision-making machine learning-based autonomous models. In addition, AF has a direct impact on the skin hydration level, hence, can be used as a measure for detection. In this paper, we present an independent review along with a comparative analysis of the state-of-the-art techniques proposed for AF detection using ECG and skin hydration levels. This paper also highlights the effects of AF on skin hydration level that is missing in most of the previous studies.en_UK
dc.language.isoenen_UK
dc.publisherFrontiers Mediaen_UK
dc.relationLiaqat S, Dashtipour K, Zahid A, Arshad K, Ullah S, Assaleh K & Ramzan N (2021) A Review and Comparison of the State-of-the-Art Techniques for Atrial Fibrillation Detection and Skin Hydration. Frontiers in Communications and Network, 2, Art. No.: 679502. https://doi.org/10.3389/frcmn.2021.679502en_UK
dc.rights© 2021 Liaqat, Dashtipour, Zahid, Arshad, Ullah Jan, Assaleh and Ramzan. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY - https://creativecommons.org/licenses/by/4.0/). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectAtrial Fibrillationen_UK
dc.subjectSkin hydrationen_UK
dc.subjectMachine Learning and Deep Learningen_UK
dc.subjecthealthcareen_UK
dc.subjectmachine learningen_UK
dc.titleA Review and Comparison of the State-of-the-Art Techniques for Atrial Fibrillation Detection and Skin Hydrationen_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate2021-07-15en_UK
dc.identifier.doi10.3389/frcmn.2021.679502en_UK
dc.citation.jtitleFrontiers in Communications and Networksen_UK
dc.citation.issn2673-530Xen_UK
dc.citation.volume2en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderEngineering and Physical Sciences Research Councilen_UK
dc.author.emailKia.Dashtipour@glasgow.ac.uken_UK
dc.citation.date15/07/2021en_UK
dc.contributor.affiliationUniversity of the West of Scotlanden_UK
dc.contributor.affiliationUniversity of Glasgowen_UK
dc.contributor.affiliationUniversity of Glasgowen_UK
dc.contributor.affiliationAjman Universityen_UK
dc.contributor.affiliationUniversity of the West of Scotlanden_UK
dc.contributor.affiliationAjman Universityen_UK
dc.contributor.affiliationUniversity of the West of Scotlanden_UK
dc.identifier.wtid1723284en_UK
dc.contributor.orcid0000-0001-8651-5117en_UK
dc.date.accepted2021-04-22en_UK
dcterms.dateAccepted2021-04-22en_UK
dc.date.filedepositdate2021-04-22en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorLiaqat, Sidrah|en_UK
local.rioxx.authorDashtipour, Kia|0000-0001-8651-5117en_UK
local.rioxx.authorZahid, Adnan|en_UK
local.rioxx.authorArshad, Kamran|en_UK
local.rioxx.authorUllah, Sana|en_UK
local.rioxx.authorAssaleh, Khaled|en_UK
local.rioxx.authorRamzan, Naeem|en_UK
local.rioxx.projectProject ID unknown|Engineering and Physical Sciences Research Council|http://dx.doi.org/10.13039/501100000266en_UK
local.rioxx.freetoreaddate2021-07-15en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2021-07-15en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2021-07-15|en_UK
local.rioxx.filenamefrcmn-02-679502.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source2673-530Xen_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
frcmn-02-679502.pdfFulltext - Published Version651.9 kBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.